针对卷积神经网络特征提取不够充分且识别率低等问题,提出了一种多特征融合卷积神经网络的人脸表情识别方法。首先,为了增加网络的宽度和深度,在网络中引入Inception结构来提取特征的多样性;然后,将提取到的高层次特征与低层次特征进行融合,利用池化层的特征,将融合后的特征送入全连接层,对其特征进行融合处理来增加网络的非线性表达,使网络学习到的特征更加丰富;最后,输出层经过Softmax分类器对表情进行分类,在公开数据集FER2013和CK+上进行实验,并且对实验结果进行分析。实验结果表明:改进后的网络结构在FER2013和CK+数据集的面部表情上,识别率分别提高了0.06%和2.25%。所提方法在人脸表情识别中对卷积神经网络设置和参数配置方面具有参考价值。
类型: 期刊论文
作者: 王建霞,陈慧萍,李佳泽,张晓明
关键词: 计算机图像处理,面部表情识别,卷积神经网络,特征融合,特征提取,表情分类
来源: 河北科技大学学报 2019年06期
年度: 2019
分类: 工程科技Ⅰ辑,信息科技
专业: 计算机软件及计算机应用,自动化技术
单位: 河北科技大学信息科学与工程学院
基金: 河北省自然科学基金(F2018208116)
分类号: TP391.41;TP183
页码: 540-547
总页数: 8
文件大小: 2730K
下载量: 778
本文来源: https://www.lunwen90.cn/article/78913cf795d60217c53ba6e9.html