浅谈火电厂脱硝系统优化调整邢建平

浅谈火电厂脱硝系统优化调整邢建平

(内蒙古包头市东河区包头铝业热电厂014040)

摘要:目前内蒙古包头市东河区包头铝业热电厂锅炉脱硝系统,采用的选择性催化还原法脱硝工艺,即SCR法,选择性催化还原法脱硝工艺是在环保应用中最多而且也是脱硝最成熟的技术。SCR法是煤炭燃烧后氮氧化物控制工艺,工艺流程是将稀释后的氨气均匀喷入锅炉燃煤产生的烟气中,将含有氨气的烟气,通过一个反应器,反应器中放置特效催化剂,烟气中的氮氧化物和氨气在催化剂的催化作用下,将烟气当中的氮氧化物转化分解成氮气和水。

关键词:脱硝;SCR;火电厂;问题;优化调整

煤燃烧所释放出废气中的氮氧化物,是造成大气污染的主要污染源之一。氮氧化物会引起严重的环境问题并危害人体健康,对于火电厂烟气中氮氧化物的治理是国家“十二五”规划的重要内容。而氮氧化物和硫氧化物是造成雾霾天气产生的主要原因之一。氮氧化物有很多不同形式,而自然界最主要存在形式是一氧化氮和二氧化氮。我国氮氧化物的排放主要来自于工业生产和车辆尾气排放,据统计其中大约百分之七十的氮氧化物的排放来自于煤炭的直接燃烧,我国电力供应主要依靠燃煤发电厂,电力工业是我国的煤炭消耗大户,因此降低燃煤火电厂氮氧化物排放是治理雾霾的主要措施之一。

1SCR脱硝技术

目前内蒙古包头市东河区包头铝业热电厂锅炉脱硝系统,采用的是选择性催化还原法脱硝工艺,即SCR法,选择性催化还原法脱硝工艺是在环保应用中最多,而且也是脱硝最成熟的技术。SCR法工艺流程是将稀释后的氨气均匀喷入锅炉燃煤产生的烟气中,将含有氨气的烟气,通过一个反应器,反应器中放置特效催化剂,烟气中的氮氧化物和氨气在催化剂的催化作用下,将烟气当中的氮氧化物转化分解成氮气和水,达到减少氮氧化物排放的效果。

在SCR法中,催化剂必须在特定温度下,才可以发挥作用,所以烟气温度是SCR法的重要参数之一,烟气温度过低,催化剂不起任何作用,而烟气温度过高,有损坏催化器的情况发生。因此控制好投运脱硝时的烟气温度至关重要。而喷入反应器的氨气如果过量的话,会产生胶质物,堵塞空预器,影响锅炉运行,威胁机组正常运行,所以氨逃逸数值也是SCR法的重要参数之一。

2脱硝系统存在的问题

脱硝喷氨系统投产以来,经常出现氮氧化物超标、氨逃逸升高等问题,影响了机组的可靠性、环保指标以及经济性。主要表现在CEMS仪表标定后超调,排粉机启动氮氧化物超调值偏大,入口氮氧化物波动大时,脱硝系统出口超调。同时烟道直管道短,单点烟气流量波动大不能参与自调,用负荷替代烟气流量误差比较大。在冬季运行期间多次发生氨流量计堵塞、氨调整门堵塞的情况,造成喷氨量减少氮氧化物超标。

3脱硝系统优化与调整

3.1选择性催化还原(SCR)脱硝

SCR(SelectiveCatalyticReduction)是由美国Eegelhard公司发明并于1959年申请了专利,而日本率先在20世纪70年代对该方法实现了工业化。SCR脱硝原理是利用NH3和催化剂(铁、钒、铬、钴或钼等碱金属)在温度为200~450℃时将NOX还原为N2。NH3具有选择性,只与NOX发生反应,基本上不与O2反应,所以称为选择性催化还原脱硝。

SCR法中催化剂的选取是关键。对催化剂的要求是活性高、寿命长、经济性好和不产生二次污染。在以氨为还原剂来还原NOX时,虽然过程容易进行,铜、铁、铬、锰等非贵金属都可起有效的催化作用,但因烟气中含有SO2、尘粒和水雾,对催化反应和催化剂均不利,故采用SCR法必须首先进行烟气除尘和脱硫,或者是选用不易受肮脏烟气污染影响的催化剂;同时要使催化剂具有一定的活性,还必须有较高的烟气温度。通常是采用二氧化钛为基体的碱金属催化剂,最佳反应温度为300~400℃。

该法的优点是:由于使用了催化剂,故反应温度较低;净化率高,选择性催化还原(SCR)技术脱销效率可高达90%。;工艺设备紧凑,运行可靠;还原后的氮气放空,无二次污染。

但也存在一些明显的缺点:烟气成分复杂,某些污染物可使催化剂中毒;高分散的粉尘微粒可覆盖催化剂的表面,使其活性下降;系统中存在一些未反应的NH3和烟气中的SO2作用,生成易腐蚀和堵塞设备的(NH4)2SO4和NH4HSO4,同时还会降低氨的利用率;投资与运行费用(投资费用80美元/千瓦)较高。

3.2修改CEMS系统维护时间,避免AB两侧脱硝出口CEMS系统同时维护,实现分时校验,确保仪表自检定不同期。在DCS系统进行逻辑修改,当脱硝系统入口氮氧化物一侧CEMS系统维护时,采用另外一侧测量值进行修正后参与自调计算。当脱硝系统出口氮氧化物CEMS系统维护时,DCS控制器跟踪脱硫侧氮氧化物数据进行调整。

3.3在脱硝系统AB两侧各增加一路旁路喷氨管路,运行时当喷氨系统发生故障时,切除故障管路,投入备用旁路。喷氨管路冗余设置,增加系统的可靠性,避免喷氨系统故障导致的氮氧化物超标。

3.4将脱硝CEMS系统电子间从原来的稀释风机层,移至喷氨调门层,缩短CEMS系统氮氧化物测量管路的距离,较少系统测量延迟,提高控制系统反应时间。

3.5通过分析历史数据,发现启动机组排粉机时,脱硝入口的氮氧化物数值会大幅增加,在脱硝控制系统中将排粉机状态作为前馈信号,当排粉机启动后一段时间,通过前馈信号,适当增大脱硝系统喷氨量。

3.6根据历史数据分析,确定了在不同负荷区间采用不同的PID调节参数调节,增加了PID变参数逻辑,同时调整负荷以及引风机电流等信号在自调逻辑中前馈比例。

3.7冬季氨流量计、氨调整门堵塞较多,把流量计前部分氨气管路通过尾部烟道预热,提高氨气温度。同时在氨流量计前加滤网,并定期清理滤网。

3.8为避免脱硝控制系统调节器积分饱和现象发生,根据调节系数高限值增加调门开度来满足喷氨需求量。

4应用效果分析

脱硝系统经过优化调整前后对比,改前锅炉出口氮氧化物值波动在10-180mg/Nm?,优化调整后氮氧化物值波动在20-50mg/Nm?,缩小了波动范围。锅炉出口氮氧化物小时均值与设定值偏差在±5mg/Nm?,未发生自调原因小时平均值超耍氮氧化物瞬时超标次数大幅降低,自调投入率达到99.7%,高于95%指标要求。系统波动情况明显减少,但仍然存在瞬时超标现象。通过脱硝系统的优化调整,节约了氨气的使用量,减少了空预器的堵塞情况的发生,同时也减轻了运行和检修人员的工作量。

5结束语

综上所述,下一步可以通过对脱硝系统进行建模,通过进行系统仿真,进一步优化调整参数,减少瞬时超标次数,避免了氮氧化物超标对机组的考核。通过对脱硝系统的优化调整,表明对脱硝系统优化调整是可行的,对脱硝系统是稳定有利的,可降低氮氧化物的排放,维护我们赖以生存的环境。

参考文献:

[1]许红彬.燃煤机组脱硝自动调节控制分析[J].山东工业技术,2017(02):56-57.

[2]王振宇.燃煤电厂的除尘、脱硫、脱销技术[J].环境保护科学,2005,(2):4-13.

[3]任剑峰等.大气中氮氧化物的污染与防治[J].科技情报开发与经济,2003,(5):92-93.

标签:;  ;  ;  

浅谈火电厂脱硝系统优化调整邢建平
下载Doc文档

猜你喜欢