一、保护地西葫芦常见病害症状识别与防治(论文文献综述)
何永林[1](2021)在《假茄科雷尔氏菌对瓜类作物的致病性以及南瓜响应病菌侵染的转录组和代谢组分析》文中研究说明青枯菌复合种(Ralstonia solanacearum species complex,RSSC)具有丰富的寄主多样性,其中假茄科雷尔氏菌(R.pseudosolanacearum)分布范围最广,引起的植物青枯病往往造成巨大的经济损失。近年来,葫芦科作物青枯病在我国少数区域有逐步发生严重的趋势,但关于不同寄主来源青枯菌菌株对葫芦科植物及其他科植物的致病性情况不清楚,葫芦科植物抵抗不同致病性菌株侵染的机理尚不明确,难以制定有效的防治葫芦科作物青枯病的措施。为此,本研究在前期研究工作已明确南瓜、丝瓜和苦瓜等葫芦科作物均可发生青枯病的基础上,以22株不同寄主来源的假茄科雷尔氏菌菌株为研究材料,测定其对南瓜、丝瓜和苦瓜的致病性,并鉴定其生理小种类型,从中筛选出对南瓜具有致病性差异的菌株,对接种后南瓜植株防御相关的生理生化性状以及转录组和代谢组进行分析,以期揭示南瓜对不同致病性菌株侵染的抗性机理。主要研究结果如下:1、测定不同寄主来源的22株菌株对南瓜、丝瓜和苦瓜的致病性结果发现,源自葫芦科的菌株(Cq01、Bg07、Tg03)以及四季豆的菌株(Kb01)对这三种瓜具有强致病力,源自烟草、花生和辣椒上的5株菌株具有弱致病力,但大部分源自非葫芦科的菌株对三种瓜无致病性。以青枯菌模式菌株GMI1000(生理小种1号)灌根接种8种植物为参照,测定16株代表菌株的生理小种,发现这些菌株均为生理小种1号。采用伤根灌菌和注射菌液的方法将5株菌株不同浓度的菌液接种到南瓜植株上,筛选出对南瓜具有强致病力的菌株Cq01和无致病性菌株GMI1000;两者接种南瓜1 d后,南瓜根系内部均检测到病菌;南瓜接种Cq01菌株5 d的植株发病率为30.56%,接种7 d后的植株发病率高达77.78%,而接种GMI1000菌株的南瓜植株一直未发病。2、Cq01和GMI1000菌株均能诱发南瓜产生活性氧和过敏性坏死反应,前者诱导程度更为强烈;Cq01菌株在侵染早期到发病中期均能显着提高南瓜植株的苯丙氨酸解氨酶(PAL)、过氧化物酶(POD)、超氧化物歧化酶(SOD)和多酚氧化酶(PPO)的酶活性,并能促进丙二醛(MAD)产生;GMI1000菌株也能显着增强南瓜植株的POD活性,但显着低于Cq01处理;GMI1000菌株只能在侵染早期增强南瓜植株的PAL、SOD和PPO的活性,不能促进MAD的产生。结果表明,南瓜接种病原菌后,植株体内的PAL、POD、SOD和PPO酶活性以及MAD含量与接种病菌的毒力强弱有关。3、南瓜响应Cq01和GMI1000菌株侵染的转录组分析结果发现,Cq01菌株接种的南瓜植株有146个差异基因,上调110个。差异基因的GO注释主要富集在乙烯激活信号通路、茉莉酸介导的信号通路、细菌防御反应、水杨酸响应和果胶分解代谢过程等方面;KEGG注释主要富集在与植物细胞壁降解相关的果胶裂解酶,与信号转导相关的钙结合蛋白和乙烯反应转录因子,与抗病相关的RPM1互作蛋白4、MYB转录因子和EREBP转录因子以及与氨基酸合成相关的乙酰鸟氨酸脱乙酰酶。GMI100菌株接种的南瓜植株有53个差异基因,上调49个。差异基因的GO注释主要富集在硝酸盐同化、寡肽运输、硝酸盐转运和植物型细胞壁组织等方面;KEGG注释主要富集在病程蛋白相关蛋白,与苯丙烷生物合成相关的肉桂醇脱氢酶和β-葡萄糖苷酶,与抗氧化相关的谷胱甘肽S-转移酶和谷胱甘肽,与能量代谢相关的果糖-1,6-二磷酸酶,与氮素代谢相关的硝酸盐/亚硝酸盐转运体等。分别选取Cq01和GMI1000与寄主互作途径的8个基因进行q RT-PCR验证,结果与转录组测序结果基本一致。4、南瓜响应Cq01和GMI1000菌株侵染的代谢组分析结果发现,接种Cq01菌株的南瓜植株有3个上调差异代谢物(鸟氨酸、苏糖酸和D-赤酮酸内酯);接种GMI1000菌株的南瓜植株有3个差异代谢物,上调1个(葡萄糖酸),下调2个(1,3-丙二胺和棉子糖)。南瓜响应Cq01和GMI1000菌株侵染的转录组和代谢组关联分析结果发现,南瓜响应Cq01菌株侵染的最密切的代谢途径是精氨酸生物合成途径,南瓜响应GMI1000菌株侵染最密切的代谢途径是戊糖磷酸途径。综上所述,源自葫芦科的菌株和少数非葫芦科的菌株对瓜类作物具有致病性,而大部分源自非葫芦科的菌株则表现无致病性;Cq01菌株侵染南瓜植株诱导防御相关的生理生化反应比GMI1000菌株侵染南瓜诱导的反应更为强烈;据南瓜响应Cq01和GMI1000菌株侵染的转录组和代谢组关联分析结果推测,南瓜受到Cq01菌株侵染后,植株体内经过精氨酸生物合成途径产生对植株自身有毒性作用的鸟氨酸代谢物,降低植株对青枯病的抗性,从而导致植株发病。GMI1000菌株可诱导南瓜植株体内增强戊糖磷酸途径产生抗病物质,抑制病菌在植株体内扩展,使植株免受病菌为害。
蒲小剑[2](2021)在《红三叶抗白粉病的生理和分子机制及抗病基因TpGDSL的克隆与遗传转化》文中进行了进一步梳理红三叶(Trifolium pratense L.)是营养价值和草产量仅次于苜蓿(Medicago Sativa L.)的多年生豆科牧草之一。该牧草用途广泛,具有广阔的开发应用前景。白粉菌(Erysiphales)作为一类普遍而重要的专性生物营养型病原菌,可严重降低红三叶草产量与品质,限制其在草牧业中的应用与发展。为阐明白粉菌对红三叶生理生化、内源激素和细胞结构的影响并验证抗白粉病TpGDSL基因的功能,本研究首先对感白粉病品种(岷山红三叶)和×抗白粉病品种(“甘农RPM1”红三叶)的杂交F2代进行抗病性评价,并建立白粉病抗性分离群体,采用人工接菌的方法,测定白粉菌侵染后不同抗性群体的生理生化变化、内源激素含量和细胞结构变化;利用F2代群体的抗病单株和感病单株作为试验材料,进行转录组分析;克隆由转录组分析得到的红三叶抗白粉病相关候选基因TpGDSL,同时构建p HB-GDSL过表达载体,并遗传转化拟南芥。取得的主要结果如下:1.白粉病病原菌为三叶草白粉菌(Erysiphe trifoliorum);人工接菌后抗病材料的电导率(EC)先升高后降低、感病材料持续升高,接菌15 d时感病材料EC较接菌前增加3.57倍。抗病材料的相对含水量(RWC)先降后升,感病材料持续降低,接菌15d时感病材料的RWC含量较接菌前减少了31.85%。超氧化物歧化酶(SOD)、过氧化物酶(POD)活性与过氧化氢酶(CAT)活性和可溶性糖(WSC)含量分别在接菌后第7 d和11 d升高,随后降低,其最高值分别为534.43±10.07 U·g-1·min-1 FW、411.73±4.08 U·g-1·min-1 FW、136.53±1.00 U·g-1·min-1 FW和32.02±0.57 mg·g-1。接菌第15 d的丙二醛(MDA)与游离脯氨酸(Pro)含量分别是接菌前的4.84和5.38倍。接白粉菌后第1和7 d,抗病材料的玉米素(ZR)、茉莉酸(JA)与水杨酸(SA)含量出现两个峰值,感病材料接菌第1d后增加,之后持续降低。抗病材料的ABA含量先升后降,感病材料的变化趋势相反。抗病材料的ZR、JA、SA与ABA含量的分别在接菌第7 d、1 d、7 d和1 d时最大,其值分别为12.23±1.27 ng·g-1、15.55±0.30 ng·g-1、124.82±1.68 ng·g-1、483.50±125.50 ng·g-1,分别较接菌前增加3.52、0.93、1.60和1.04倍。接菌后红三叶抗病材料内源激素变化幅度大于感病材料,表明抗病材料中白粉菌对红三叶体内内源激素的效应更明显。2.抗病红三叶单株叶片的上表皮细胞宽,叶片厚度、栅栏组织厚度及蜡质含量均极显着高于感病材料(P<0.01),分别高16.13%、22.29%、29.99%与85.90%;抗病材料的上表皮细胞宽度增大、栅栏组织加厚、栅栏组织细胞排列更紧密有序,感病材料的海绵组织厚度显着增加、海绵细胞排列松散混乱。白粉菌侵染增加了细胞壁的半纤维素、纤维素和木质素含量,降低了可溶性果胶的含量,其中抗病材料纤维素、半纤维素、木质素和羟脯氨酸糖蛋白含量略高于感病材料。3.白粉菌侵染后抗性差异红三叶代谢中DEGs分别富集在苯丙烷途径、甲醛戊酸途径、木质素和木酚素途径与硫代葡萄糖苷等代谢途径。CHRs、C2H2、HAD、MYB、b ZIP和MADS等转录因子家族基因参与红三叶白粉病防御反应。SA与IAA通路中相关基因AXR1、CYP、CAND1和PPR-like可能在红三叶白粉病防御反应中具有积极作用。细胞色素P450、氧化酶类、磷酸酶、腈水解酶及GDSL脂肪酶等家族中DEGs分别富集23、20、18、14与2条。木质素代谢途径中PAL、C4H、4CL和BGL、ABA调控路径中NAD(P)-binding Rossmann-fold、赤霉素代谢途径中2-氧戊二酸/铁(II)依赖双加氧酶及JA合成前体12-Oxo-PDA等基因均参与调控红三叶的防御过程。转录组分析显示红三叶GDSL同源基因有较高的本底表达和差异表达倍数,Log2(FC)为10.62,本研究选择GDSL基因进行研究。4.克隆得到编码366个氨基酸,全长1101bp的TpGDSL基因。蒺藜苜蓿(Medicago truncatula)GDSL基因与该基因氨基酸序列相似性高达86.47%。TpGDSL基因编码蛋白分子式为C1776H2704N470O561S15,相对分子量为40.9672kD,理论等电点(p I)为4.39,正、负电荷残基为20和35,不稳定系数为31.38,为不稳定蛋白,脂肪系数为81.01。TpGDSL编码蛋白可能存在于细胞外基质(Extracell)。TpGDSL蛋白主要包括36.34%α螺旋(Alpha helix,Hh)、4.10%β转角(Beta turn,Tt)、17.49%延伸链(Extended strand,Ee)、及42.08%无规则卷曲(Random coil,Cc)。该基因翻译的蛋白均由二级结构和三维结构覆盖,覆盖率和可信度分别达82%和100%。本试验采用农杆菌介导的花序浸染法将重组过表达载体p HB-GDSL转入模式植物野生型拟南芥中,得到16 lines T1代阳性转基因种子,为TpGDSL基因的功能分析奠定了基础。
张雅雯[3](2021)在《基于黄瓜花叶病毒构建双联和三联弱毒疫苗的研究》文中研究指明病毒病是危害植物的主要病害之一,能够造成巨大的经济损失。随着基因工程和生物技术的发展,病毒交叉保护方面的研究更加深入,为植物病毒病的防治提供了有效途径。黄瓜花叶病毒(cucumber mosaic virus,CMV)是雀麦花叶病毒科(Bromoviridae)黄瓜花叶病毒属(Cucumovirus)的典型成员,是目前已知的寄主种类最多、分布范围最广的植物病毒之一,其三分体基因组特性,为容纳更多的异源病毒片段提供可能,因此利用CMV开发多联弱毒疫苗具有极大的潜力。本研究以实验室构建的CMV RNA2弱毒突变体为基础,插入不同类型的异源病毒片段,筛选出遗传稳定、对靶标病毒具有交叉保护作用的双联和三联弱毒疫苗;以及探索性改造RNA3,为优化疫苗开发载体奠定基础。在CMVFny RNA2的2b蛋白提前终止型突变体p CCFR2-2b PTII基础上,分别插入不同病毒片段的保守序列,构建了3种类型(CMV/TMV、CMV/TCV、CMV/TSWV)的18个双联弱毒突变体以及3种类型(CMV/TMV/PVX、CMV/TMV/PVY、CMV/TMV/TVBMV)的3个三联弱毒突变体。将不同的双联、三联弱毒突变体与CMVFny野生型RNA1和RNA3混合,分别接种本生烟,均不引起病毒病症状,14天后检测系统叶片,突变位点均稳定存在,说明弱毒突变体具备遗传稳定性。在双联弱毒突变体交叉保护实验中,预先接种突变体p CCFR2-2b PTII-TM2079II、p CCFR2-2b PTII-TM2158、p CCFR2-2b PTII-TM4059、p CCFR2-2b PTII-TM5088、p CCFR2-2b PTII-TM5738对TMV均有较好的防治效果;预先接种p CCFR2-2b PTII-TC105、p CCFR2-2b PTII-TC1261、p CCFR2-2b PTII-TC3135对TCV均有明显的防治效果。在三联弱毒突变体交叉保护实验中,预先接种突变体p CCFR2-2b PTII-T100X100I对CMV/TMV/PVX的交叉保护效果明显;预先接种突变体p CCFR2-2b PTII-T100T100I对CMV/TMV/TVBMV交叉保护效果较弱;预先接种突变体p CCFR2-2b PTII-T100Y100I对CMV/TMV/PVY没有交叉保护效果。在CMVFny RNA3的基础上,构建了2种CP蛋白突变体、1种基因间隔区(IGR)部分缺失型突变体以及1种蚜传位点突变体。CP蛋白突变体和IGR部分缺失型突变体接种后出现突变回复成野生型的现象,不符合弱毒疫苗的遗传稳定的基本要求。蚜传位点突变体p CCFR3-YCYF与野生型RNA1和RNA2混合接种植物后,能够正常侵染发病并且蚜传位点的突变稳定存在,具备与RNA2弱毒疫苗混合使用的潜力。本研究基于CMV创制了二联、三联弱毒疫苗,以及蚜传位点突变体,为植物病毒病尤其是烟草病毒病的防治提供了材料和数据支持。
杜庆志[4](2021)在《小麦白粉病菌对环氟菌胺抗性风险评估及防效评价》文中指出小麦白粉病是小麦常见的叶部病害之一,发病严重时会在造成严重减产甚至绝产。由于气温变化,防治药剂的过度使用和耕作制度的改变,白粉病已经开始在我国逐渐往北移动。环氟菌胺(cyflufenamid)是新型的酰胺类的杀菌剂,由日本曹达公司研究开发。目前文献表明环氟菌胺对白粉病具有良好的防治效果为评价环氟菌胺对于小麦白粉病的防控效果。本试验使用盆栽法测定小麦白粉病病菌对环氟菌胺的敏感性,培育突变体,同时进行生物学性状分析对比,研究小麦白粉病对于环氟菌胺抗性的发展情况。与常用药剂的混配交替使用,减缓抗性的发生。在室内试验的基础上,在田间条件下测定环氟菌胺对于小麦白粉病的防治效果和产量的影响,本试验主要结果如下:1、使用盆栽法测定6个不同小麦产区的67株小麦白粉病病菌对环氟菌胺均具有较高敏感性。比较发现山东烟台、河南新乡、河北石家庄、安徽涡阳、云南丽江和四川雅安6个地区的67株小麦白粉病菌株对环氟菌胺的敏感性无显着差异,6个不同地区的变异系数分别为2.60、1.67、4.39、1.41、6.43和2.03,各个地点敏感性均符合正态分布。67株小麦白粉病菌菌株的敏感性分布范围为0.1199-0.9365 mg/L,平均EC50为0.4982mg/L,67株白粉病菌的正态检验P值为0.8969,敏感基线为连续单峰曲线,符合正态分布规律。因此可作为主要小麦产区的小麦白粉病菌对环氟菌胺的敏感基线。2、通过紫外诱导形成抗性菌株,分别为HBSJZ-Z-5和HNXX-Z-5,抗性水平分别为14.36和8.78,抗性菌株突变频率为0.028%;经过药剂连续驯化方法获得3株抗性菌株,分别为HBSJZ-R-3,SDYT-R-3,SDYT-R-7,抗性水平分别为5.23,7.46和9.10,抗性菌株突变频率为0.042%。通过对比抗性菌株和亲本菌株对于5种常用杀菌剂的敏感性强弱为嘧菌酯>吡唑醚菌酯>戊唑醇>多菌灵>多抗霉素,且与环氟菌胺不存在交互抗性。在抗性遗传稳定性中表明抗性菌株在连续培养10代后,抗性均不能稳定遗传,但EC50仍高于对应的亲本菌株。在抗性菌株的抗性生物学的研究表明,抗性菌株的产孢和萌发均低于相对应的亲本菌株,在对比抗性菌株和亲本菌株5、7和9 d的致病性表明,抗性菌株的致病力显着低于亲本菌株。确定环氟菌胺-小麦白粉病组合抗性风险等级3-12,最高为中等抗性风险。3、针对已登记的药剂戊唑醇、多菌灵和吡唑醚菌酯筛选防治小麦白粉病菌最佳配比。通过比较对2个不同品种小麦的防效差异性,为大田小麦白粉病的防治提供参考依据。采用盆栽法,测定3种药剂对2个小麦品种上白粉病的毒力及其不同配比的共毒系数(CTC),找出合理配比。结果表明3种药剂在‘山农16’和‘泰农18’2个小麦品种上,均为多菌灵与戊唑醇配比5:3时,增效作用最优,共毒系数CTC分为122.66和123.56;戊唑醇与吡唑醚菌酯配比均在2:1时,增效作用最优,CTC为139.09和129.97;多菌灵与吡唑醚菌酯配比均在1:1时,增效作用最优,CTC为135.15和145.24。本研究确定了多菌灵、戊唑醇和吡唑醚菌酯不同混配的最佳配比,为大田小麦白粉病防治药剂的混配和与环氟菌胺交替用药提供参考依据。4、大田小麦试验结果表明,50 g/L环氟菌胺EC在25、30、40、50、60和100 m L/hm2时山东宁阳和山东肥城2地试验田表明,使用环氟菌胺后可以有效抑制小麦白粉病的发生。50 g/L环氟菌胺EC 25 m L/hm2时与对照药剂430 g/L戊唑醇SC的防治效果相当,两地均在100 m L/hm2时防效达到最大值;对比药剂150 g/L苯并烯氟菌唑EC 225和300m L/hm2时与50 g/L环氟菌胺EC在50和60 m L/hm2防效相当,说明环氟菌胺防治小麦白粉病效果优异。对比山东宁阳和肥城2地的小麦产量,50 g/L环氟菌胺EC制剂用量在25、30、40、50、60和100 m L/hm2时千粒重均有所增加,150 g/L苯并烯氟菌唑EC 300 m L/hm2时,千粒重达到最大,与50 g/L环氟菌胺EC 100 m L/hm2时无差异显着性。对比穗数和穗粒数两指标发现,不同处理与空白对照没有差异显着性,表明不同处理对于穗数和穗粒数没有影响。在产量和增产率指标中,不同处理小麦产量均高于空白对照。
董文科[5](2020)在《草地早熟禾抗白粉病机理研究》文中研究说明草地早熟禾(Poa pratensis)是城市草坪建植中主要使用的冷季型草坪草之一,广泛用于草坪建设以及生态环境治理;白粉病(Blumeria graminis DC.)是草地早熟禾常见病害之一,也是影响草坪质量和降低草坪利用年限的主要因素。目前,关于草地早熟禾白粉病的防治方法主要为药剂防治,但药剂防治成本较高且污染环境,而选育优良抗病品种成为草坪病害防治中最为经济有效的方法之一;同时,更为深入的探究草地早熟禾对白粉病侵染的响应机制,可以为后续的抗病基因挖掘和草坪草抗病分子育种工作提供有力支持。为此,本研究选用草坪建植中常用的10个草地早熟禾品种为材料,进行白粉病抗性评价。基于抗性评价结果,选择高抗和极感品种为材料,分析了白粉病侵染对抗、感草地早熟禾品种的形态及生理响应差异,并从转录组学和蛋白质组学水平对比分析了抗、感草地早熟禾应答白粉病侵染的分子机制,鉴定了与抗病相关的基因和蛋白,从形态、生理生化特性及分子水平上分析了抗病机制。主要结果如下:(1)通过对10个草地早熟禾品种进行白粉菌接种试验发现,各草地早熟禾品种的白粉病发病率在2.33%~83.00%之间,病情指数在0.55~62.93之间;其中,黑杰克的发病率和病情指数最低,分别为2.33%和0.55;超级哥来德的发病率和病情指数最高,分别为83.00%和62.93;以不同草地早熟禾品种的病情指数为分析变量进行聚类分析,评价获得1个高抗白粉病品种(黑杰克)、3个中抗品种(午夜2号、Shamrock和公园)、3个中感品种(橄榄球2号、耐力和耐盐月夜)、2个高感品种(解放者和抢手股)和1个极感品种(超级哥来德)。(2)白粉病侵染对抗、感草地早熟禾品种的发病情况、形态特征及生理变化存在显着差异。高抗品种‘黑杰克’发病率和病情指数随接菌时间的延长而上升缓慢,同时表现出较强的生长活性(株高、根长和Wd)、叶片保水能力(RWC)、渗透调节能力(SS、SP和Pro)和抗氧化能力(SOD、POD、CAT、APX、As A和GSH),以及较低的膜脂过氧化程度(REC、MDA、O2·-产生速率和H2O2);极感品种‘超级哥来德’发病率和病情指数随接菌时间的延长而上升较快,同时其生长受到严重限制,叶片保水能力、渗透调节能力和抗氧化能力较低,膜脂过氧化程度较高。草地早熟禾的抗病性与苯丙烷代谢关键酶(PAL、4CL、C4H和PPO)的活性和次生代谢物质(总酚、类黄酮、纤维素、半纤维素、木质素和果胶)的含量紧密相关。抗病品种‘黑杰克’在接菌后苯丙烷代谢关键酶活性显着增加,而极感品种‘超级哥来德’的酶活性虽在发病初期有所上升,但上升幅度较小,并且在发病后期呈下降趋势。在接菌前期,除果胶外,‘黑杰克’的总酚、类黄酮、纤维素、半纤维素和木质素含量均显着高于‘超级哥来德’,这可能是‘黑杰克’初期表现较强抗病性的物质基础,随接菌后时间的延长,‘黑杰克’显着提高了次生代谢物质的含量,以增加自身抗病能力;而‘超级哥来德’的次生代谢物质含量虽在接菌初期有所上升,但总体上升幅度较小,并且在发病后期呈下降趋势,次生代谢物质含量显着低于‘黑杰克’。(3)白粉病侵染对极感品种‘超级哥来德’的光合作用影响较大,‘超级哥来德’的Chl含量、光合气体交换参数(Pn、Gs和Tr)、叶绿素荧光参数(ΦPSII、ETR和q P)以及光合作用关键酶(Rubisco、GAPDH和PRK)活性在接菌后显着减低,导致光合作用效率下降;而高抗品种‘黑杰克’光合机构性能受白粉病侵染影响较小,较高的Chl含量和光合酶活性有利于‘黑杰克’维持在较高光合效率。此外,高抗品种‘黑杰克’在应答白粉病侵染时显着增加了蔗糖合成相关酶活性,提高蔗糖含量,降低葡萄糖和果糖的含量,并且淀粉含量维持在一个稳定状态;而极感品种‘超级哥来德’在接菌后蔗糖含量下降,葡萄糖和果糖的含量增加;同时随接菌时间的延长,淀粉含量迅速增加,造成淀粉代谢异常。(4)接菌第5 d后,通过对抗、感草地早熟禾叶片的转录组学进行分析,在‘黑杰克’和‘超级哥来德’中分别鉴定出27,827个DEGs(22,637个上调,5,190个下调)和33,593个DEGs(29,189个上调,4,404个下调);有18,803个DEGs为两品种共有,9,024个DEGs为‘黑杰克’特有,14,790个DEGs为‘超级哥来德’特有。这些基因在‘黑杰克’中主要参与“代谢途径”、“次生代谢产物的生物合成”、“植物-病原体相互作用”、“苯丙烷类生物合成”、“内质网的蛋白质加工”、“萜类骨架生物合成”、“谷胱甘肽代谢”、“淀粉和蔗糖代谢”、“氨基糖和核苷酸糖代谢”和“MAPK信号通路-植物”途径;在‘超级哥来德’中主要参与“代谢途径”、“次生代谢产物的生物合成”、“植物-病原体相互作用”、“内质网的蛋白质加工”、“苯丙烷类生物合成”、“谷胱甘肽代谢”、“氨基糖和核苷酸糖代谢”、“MAPK信号通路-植物”、“半胱氨酸和蛋氨酸代谢”和“萜类骨架生物合成”途径。与极感品种‘超级哥来德’相比,白粉病侵染促进了‘黑杰克’信号转导(植物-病原体相互作用通路、植物MAPK信号通路)、次级代谢(苯丙烷类生物合成、类黄酮生物合成)、光合途径(光合作用、卟啉和叶绿素代谢和类胡萝卜素生物合成)和碳水化合物代谢(淀粉和蔗糖代谢)相关基因的表达;而‘超级哥来德’中参与转录和翻译的基因及转录因子的表达易受白粉病侵染的影响。(5)接菌第5 d后,通过对抗、感草地早熟禾叶片的蛋白质组学进行分析,在高抗品种‘黑杰克’中有27个DAPs上调,31个DAPs下调;极感品种‘超级哥来德’中有60个DAPs上调,80个DAPs下调。有32个DAPs为两品种共有;26个DAPs只在‘黑杰克’中出现,为‘黑杰克’特有;108个DAPs只在‘超级哥来德’中出现,为‘超级哥来德’特有。这些DAPs在‘黑杰克’中,主要参与“氧化磷酸化”、“苯丙烷类生物合成”和“光合作用-天线蛋白”途径,而在‘超级哥来德’中主要参与“核糖体”、“甘氨酸、丝氨酸和苏氨酸代谢”、“程序性坏”、“丙氨酸、天冬氨酸和谷氨酸代谢”、“精氨酸生物合成”、“氨基糖和核苷酸糖代谢”、“氰胺酸代谢”和“磷酸肌醇代谢”途径。将蛋白质组鉴定结果与转录组结果进行关联分析发现,在‘黑杰克’中有55个DAPs与DEGs相关联;在‘超级哥来德’中有119个DAPs与DEGs相关联。通过对关联上的DAPs所参与的KEGG通路进行分析发现,在‘黑杰克’中关联上的DAPs数目最多的通路主要有“内质网蛋白质加工”、“苯丙烷类生物合成”、“丙酮酸代谢”、“柠檬酸循环”和“糖酵解/糖异生”等;在‘超级哥来德’中数目最多的通路主要有“苯丙烷类生物合成”、“核糖体”、“内质网蛋白质加工”、“淀粉与蔗糖代谢”、“糖酵解/糖异生”、“丙酮酸代谢”和“PI3K-Akt信号通路”。本研究初步探明了高抗白粉病草地早熟禾品种抗病的形态、生理及分子机制,鉴定了高抗白粉病草地早熟禾品种应答白粉病侵染的关键代谢通路以及与抗病相关的基因和蛋白,但以上抗病基因和蛋白在提高草地早熟禾抗白粉病的作用机制还需进一步深入研究。
冀树娴[6](2019)在《西瓜花叶病毒遗传多样性及长距离移动决定因子研究》文中进行了进一步梳理西瓜花叶病毒(Watermelon mosaic virus,WMV)属于马铃薯Y病毒科(Potyviridae)马铃薯Y病毒属(Potyvirus),主要通过蚜虫以非持久性方式传播。WMV寄主范围广泛,是危害葫芦科、藜科、豆科等多种作物的重要病毒。受WMV危害后,作物的产量和品质严重下降。本研究制备了WMV CP特异性抗血清,明确了WMV臭椿分离物CN:AIL-TA:17和西葫芦分离物CN:ZUC-JN:17在生物学和血清学上的差异,分析了2个WMV分离物遗传进化关系,构建了CN:ZUC-JN:17全长侵染性cDNA克隆,鉴定了81种葫芦科作物品种对WMV的抗性,验证了WMV P1基因在决定寄主范围中的作用。具体结果如下:(1)制备了效价高、特异性强的WMV CP抗血清。利用原核表达的WMV CP免疫新西兰大白兔获得WMV CP抗血清。该抗血清能特异性识别WMV CP,与同属的番木瓜环斑病毒(Papaya ringspot virus,PRSV)、马铃薯Y病毒(Potato virus Y,PVY)、小西葫芦黄花叶病毒(Zucchini yellow mosaic virus,ZYMV)和烟草花叶病毒属的黄瓜绿斑驳花叶病毒(Cucumber green mottle mosaic virus,CGMMV)均无反应。ELISA检测表明制备的WMV CP抗血清效价为1:8192。(2)分析了WMV西葫芦分离物CN:ZUC-JN:17和臭椿分离物CN:AIL-TA:17生物学特性。利用Western blotting分析发现西葫芦分离物CN:ZUC-JN:17和臭椿分离物CN:AIL-TA:17存在血清学上相关性。通过机械摩擦接种方法将CN:ZUC-JN:17和CN:AIL-TA:17分离物分别接种到本氏烟和西葫芦,结果发现,CN:AIL-TA:17能系统侵染本氏烟,但不侵染西葫芦;CN:ZUC-JN:17能够系统侵染西葫芦,但仅能侵染本氏烟的接种叶片,不能进行系统侵染。(3)分析2个WMV分离物在全基因组水平上的遗传多样性。通过RT-PCR和5’RACE技术获得西葫芦分离物CN:ZUC-JN:17和臭椿分离物CN:AIL-TA:17全基因组序列。序列分析发现CN:ZUC-JN:17和CN:AIL-TA:17基因组全长分别为10028和10045个核苷酸(Nucleotide,nt),其中CN:ZUC-JN:17的开放阅读框为9645 nt,编码一个含3215氨基酸的多聚蛋白;CN:AIL-TA:17的开放阅读框为9657 nt,编码一个含3219氨基酸的多聚蛋白。与NCBI数据库中的其他WMV分离物比较发现,CN:ZUC-JN:17和CN:AIL-TA:17的全基因组序列分别与分离物CN:SQU-TA:16和CN:AIL-BJ核苷酸一致率最高,为93.9%和89.7%。系统进化分析发现本研究获得的CN:ZUC-JN:17分离物属于III组;CN:AIL-TA:17分离物与北京的臭椿分离物同属于VI组。基于全基因组序列的重组分析表明CN:ZUC-JN:17分离物中存在多个重组事件,是CN:WMV-WS:16、CN:WMV-CHN:05、FR:FBR04-37:04分离物的重组体;但未在CN:AIL-TA:17分离物中发现重组事件。同源性分析结果表明,分离物CN:AILTA:17与CN:ZUC-JN:17分离物在P1基因的同源性最低。(4)获得WMV侵染性克隆pCamWMV和含有GFP的pCamWMV-GFP。基于WMV西葫芦分离物成功构建了WMV侵染性cDNA克隆pCamWMV,将其通过农杆菌浸润方法接种西葫芦、甜瓜和西瓜等葫芦科植物,发病率均为100%。将GFP插入WMV NIb和CP蛋白酶识别位点之间,获得了能在紫外灯下观察病毒积累和分布的pCamWMV-GFP表达载体。(5)鉴定了81个山东省主要葫芦科品种对WMV的抗性。利用制备的WMV侵染性克隆pCamWMV-GFP,通过室内农杆菌浸润接种方法试验鉴定了81个山东省主要葫芦科品种对WMV的抗性。结果发现,在鉴定的14个西葫芦品种中,筛选到万盛丰宝和盛丰金珠2个中抗品种,其余品种为感病或高感品种;13个西瓜品种中,绿宝新秀和浪潮一号2个品种为中抗品种,其余品种为感病或高感品种;24个甜瓜品种中,只筛选到面皮黄瓜1个品种为抗病,其余品种为感病或高感品种;16个黄瓜品种中,星君贝贝为中抗品种,其余品种均为高抗;9个南瓜品种中,爱维80南瓜属于高抗,其余属于抗病或中抗;5个瓠瓜品种中,浙浦6号和瓠子瓜2个品种属于感病,其余3个品种均为高感。(6)分析了WMV P1在本氏烟中决定长距离移动。将侵染性克隆pCamWMVGFP在本氏烟中进行继代接种,在继代二次的本氏烟中获得了能够系统侵染本氏烟的自然突变体,与野生型侵染性克隆相比,其P1基因发生了变异。利用同源重组方法将CN:AIL-TA:17的P1基因替换到侵染性克隆pCamWMV-GFP中,获得异源P1的WMV嵌合突变体pCaZUC-JN-AIL-TA-P1。将WMV嵌合突变体通过农杆菌浸润方法接种本氏烟,8天后本氏烟系统叶片出现绿色荧光点,表明WMV嵌合突变体具有系统侵染本氏烟的能力,证明了WMV P1基因在决定长距离移动过程中具有重要作用。
王健[7](2019)在《小西葫芦黄花叶病毒遗传多样性及致病力分析》文中指出小西葫芦黄花叶病毒(Zucchini yellow mosaic virus,ZYMV)属于马铃薯Y病毒属(Potyvirus),是侵染葫芦科作物的主要病毒之一,可引起严重花叶、皱缩、果实畸形等症状,给葫芦科作物的生产造成极为严重的损失。建立准确的ZYMV检测体系和种植抗病品种是目前最为有效的防治措施。本研究制备了ZYMV外壳蛋白特异性抗血清,分析了危害山东葫芦科作物的ZYMV分离物的分类地位,构建了ZYMV侵染性克隆并研究了HCpro WxxxG基序在ZYMV致病过程中的作用,筛选了抗ZYMV的葫芦科作物品种,为有效防治ZYMV提供了基础。主要研究结果如下:(1)ZYMV CP特异性多克隆抗体的制备及应用。利用ZYMV特异性引物扩增CP基因编码序列,并克隆到原核表达载体pEHISTEV上。通过对宿主菌种类、IPTG诱导时间及浓度等因素进行筛选,获得最佳表达条件:Rosetta菌株,利用0.2 mmol·L-1 IPTG诱导4 h。通过原核表达方法成功诱导表达出37 kDa左右的融合蛋白,将融合蛋白免疫健康新西兰长耳兔获得效价为1:32768的ZYMV CP特异性抗血清。与RT-PCR对比发现,制备的抗血清具有高度的准确性。利用该抗血清对西葫芦(绿源冬宝)和甜瓜(火银瓜)种子检测发现,种子带毒率分别为39.8%、15.1%,幼苗带毒率为2.56%和5.13%,对种子进行热处理可有效降低幼苗带毒率。(2)ZYMV两个山东分离物(CN:Cm:17、CN:Lc:17)全基因组序列的克隆及分析。在山东泰安采集到的有明显黄花叶症状的丝瓜和南瓜样品中检测到ZYMV,利用RT-PCR和5′末端序列扩增技术(RACE)获得了两个分离物的全基因组序列,分别命名为CN:Cm:17(南瓜分离物)和CN:Lc:17(丝瓜分离物)。序列分析结果表明,CN:Cm:17和CN:Lc:17基因组除Poly(A)尾巴外分别含有9,593和9,591个核苷酸(Nucleotides,nt),编码一个含3 080氨基酸的多聚蛋白。在多聚蛋白氨基酸水平上,CN:Cm:17与CN:Lc:17一致率为96.7%,与NCBI数据库中48个ZYMV分离物一致率分别为90.3%97.8%、90.5%98.4%。重组分析发现,CN:Lc:17分离物内具有显着重组事件,为KR:KR-PA:05和CN:Cm:17两个分离物的重组体。基于多聚蛋白编码序列的系统进化聚类结果显示分组与分离物的地理起源存在密切相关性,中国分离物分别聚集在A-V和A-VI亚组。(3)ZYMV CN:Cm:17分离物全长侵染性cDNA克隆的构建。利用同源重组的方法将CN:Cm:17全基因组克隆到含35S启动子的农杆菌双元载体pCam35S上,命名为pCamZYMV。将含有pCamZYMV的利用农杆菌浸润接种到西葫芦(Cucurbita pepo)、南瓜(Cucurbita moschata)等寄主上,接种14天后表现与野生型ZYMV类似症状,侵染效率为100%,表明构建的pCamZYMV具有较好的侵染性。将带绿色荧光蛋白gfp基因序列插入到pCamZYMV侵染性克隆NIb和CP之间,获得pCamZYMV-GFP。将其通过农杆菌浸润方法接种西葫芦、南瓜,5天后接种叶上可观察到绿色荧光,14天后系统叶片表现花叶症状,并在发病部位观察到明显绿色荧光。(4)WxxxG保守基序影响ZYMV致病力并参与HCpro抑制RNA沉默功能。在pCamZYMV-GFP侵染性克隆的HCpro编码区域WxxxG基序保守位点引入突变,获得单突变体W207A、G211A及双突变体WG。将突变体接种至西葫芦品种绿源冬宝发现,突变W207位点或WG位点均减轻症状,显着降低病毒积累水平;突变G211位点对病毒症状和积累水平无明显影响。RNA沉默试验分析发现,突变W207位点对HCpro抑制RNA沉默能力无明显影响,但突变G211位点能够显着降低ZYMV HCpro抑制RNA沉默能力。(5)40个葫芦科品种对ZYMV的抗性鉴定。结果发现,精选唐山秋瓜和青丰长瓠子瓜为高抗品种;雪峰小玉五号和金福为抗病品种;津研四号、中农28号、耐热王中王、泰国中绿丝瓜、蟋蟀牌肉多多、高抗巨龙、盈克二号、浙蒲6号和佳丽蒲瓜9个为中抗品种。
缪为文,沈金龙,闻舒,吉红艳[8](2017)在《温室西葫芦常见病害的发生与防治》文中研究指明西葫芦因其营养丰富、产量高、效益好而受到消费者和种植户的喜爱。本文针对温室西葫芦生产过程中发生的主要病害,就其发生与防治进行了总结,以期为提高西葫芦的产量、品质和效益提供技术支撑。
任琛荣[9](2016)在《北疆籽用西葫芦病毒病害调查及病毒种类鉴定和检测》文中研究说明籽用西葫芦种植是新疆极具发展潜力的新兴产业之一,已成为地区经济增长和当地农民增收的主要方式。病毒病在籽用西葫芦种植中普遍发生并造成严重的经济损失。本研究通过对北疆地区籽用西葫芦病毒病的调查及鉴定,为生产实践防治籽用西葫芦病毒病害提供理论依据。对石河子等6个普遍发生籽用西葫芦病毒病害的地区进行田间症状及发病情况的初步调查,结果显示:籽用西葫芦病毒病始发期为6月下旬至7月中旬,盛发期为7月中旬至8月上旬,其中石河子大学教学试验场籽用西葫芦病毒病为6月下旬开始至7月上旬缓慢发展,7月中旬至下旬,快速发展,截止8月13日籽用西葫芦病毒病发病率达100%。所调查的6个籽用西葫芦种植区均有花叶型、黄化型、畸形、蕨叶型以及复合类型,但发病率及病情指数不同。说明籽用西葫芦病毒病症状类型大致相同,但不同地区发病程度有较大差异。以采自新安镇等7个地区的121份籽用西葫芦病毒病疑似样品为研究对象,通过田间症状观察及RT-PCR检测,结果表明:侵染籽用西葫芦的毒原主要有黄瓜花叶病毒(CMV)、小西葫芦黄瓜花叶病毒(ZYMV)、西瓜花叶病毒(WMV)和番木瓜环斑病毒西瓜株系(PRSV-W),4种病毒的检出率为68.6%,95.0%,81.0%和28.1%;其中受2种及2种以上病毒复合侵染率达90.1%,主要以ZYMV+CMV、ZYMV+WMV+PRSV-W、ZYMV+CMV+WMV+PRSV-W复合侵染为主。为明确籽用西葫芦种子携带病毒的情况并筛选出有效脱除病毒的方法,以籽用西葫芦种子为材料,采用多重PCR技术检测种子带毒率,并通过相对荧光定量分析8种不同温度下湿热和干热处理对种子病毒的钝化效果。结果表明,京丰等7个品种籽用西葫芦种子均可检测到CMV、ZYMV及WMV,其中CMV的检出率为67.1%,ZYMV的检出率为50.0%,WMV的检出率为72.3%,而病毒复合检出率为66.0%。;不同品种种子的病毒检出率有明显差异,其中粒丰9号种子的检出率最低为60%,而京丰9号、瑞丰9号、绿丰9号及金葫360的检出率均为100%。8种处理均能不同程度降低籽用西葫芦种子的带毒率,其中干热60℃,70℃,湿热75℃处理时,脱除WMV,CMV和ZYMV的效果最好。
李昕升[10](2015)在《南瓜在中国的引种和本土化研究》文中研究说明南瓜起源于美洲,学名Cucurbitamoschata,Duch.,是葫芦科南瓜属一年生蔓生性草本植物。南瓜在中国的产地不同,叫法各异,南瓜无疑是该栽培作物最广泛的叫法。南瓜是中国重要的蔬菜作物,是中国菜粮兼用的传统作物,栽培历史悠久,经由欧洲人间接从美洲引种到中国,已有500余年的栽培历史。目前我国是世界南瓜的第一大生产国和消费国,南瓜的栽培面积很广,全国各地均有种植,产量颇丰,南瓜除了作为夏秋季节的重要蔬菜,还有诸多其他妙用。本研究属于农业史(农业科技史、农业经济史、农村社会史)的研究范畴,以历史地理学、历史文献学等相关理论为指导,结合定性与定量、动态与静态以及比较分析的方法,研究南瓜在中国的引种和本土化。重点分析南瓜的起源、世界范围的传播、品种资源、名称考释,中国引种的时间、引种的路线、推广的过程、生产技术的发展、加工利用技术的发展,引种和本土化的动因、引种和本土化的影响等,力求全方位、动态的展现南瓜在中国引种和本土化的全貌。通过对历史文献的数据分析和地理信息科学(GIS)技术的运用,尽可能地将历史时期南瓜种植分布情况地图化,以便更清晰、直观的呈现南瓜种植的时空演变。顾名思义,“引种”是指美洲作物南瓜从域外引种到中国,包括引种的时间、路径、过程等相关问题。“本土化”则包含了三层含义:第一,推广本土化,南瓜从引种到中国以后,通过多种方式、路径在中国推广,从最初引种的东南沿海、西南边疆推广到各大地区,并逐步覆盖全国,南瓜的推广本土化过程不但使南瓜在全国迅速普及,而且也导致南瓜主要种植区发生了时空的变迁,推广本土化最为重要,南瓜很快成为与日常生活密切相关的农作物,推广本土化在民国时期基本完成;第二,技术本土化,虽然南瓜的生产技术与加工、利用技术在美洲历史悠久,但是没有随着南瓜引种到中国而一同传入,完全是中国劳动人民在传统瓜类技术的基础上,充分发挥主观能动性,创造性的总结出了一整套的南瓜生产技术体系和加工、利用技术体系,技术本土化最为复杂,在明清时期达到高潮,民国以来继续发展,改革开放之前基本完成;第三,文化本土化,这里所说的文化是指精神层面狭义的文化,南瓜文化融入中国传统文化,是一个漫长的、潜移默化的过程,从南瓜民俗的兴起,到南瓜文学的传播,再到南瓜精神的扩散,南瓜文化从属于了中华民族的文化心理认同,文化本土化最为深入人心,是当今国人不知南瓜为域外作物的重要心理原因,文化本土化在民国时期发展最快,达到了高潮,在新中国成立之后,乃至到了今天都从未停止。推广本土化、技术本土化和文化本土化,三者相互联系、相互影响,本研究也主要从这三个层面展开。美洲是人类最早栽培的古老作物之一——南瓜的起源中心,南瓜在美洲的历史至少可以追溯到公元前3000年,在前哥伦布时代,南瓜已经是美洲印第安农业的主要农作物,对南瓜的生产和利用都已经达到了相当的水平。1492年,哥伦布发现新大陆之后,南瓜随着欧洲向美洲殖民、探险、宗教传播的高潮,先传入欧洲,并经由欧洲人之手传遍世界各地。中国可能是在16世纪初期由葡萄牙人首先引种到东南沿海,稍晚西南边疆也独立从印度、缅甸一带引种南瓜。由此,南瓜迅速在中国内地推广,南瓜与其他美洲作物相比,最突出的特点就是除了个别省份基本上都是在明代引种的,17世纪之前,除了东三省、台湾、新疆、青海、西藏,其他省份南瓜栽培均形成了一定的规模。入清以来南瓜在各省范围内发展更加迅速,华北地区、西南地区逐渐成为南瓜主要产区。新中国成立之后,南瓜产业发展有序而规范,文革时期南瓜生产进入停滞期,直到改革开放以后,尤其是1990年代以来,南瓜产业才再次焕发生机,既面临机遇也面临挑战,南瓜的生产和发展在改革开放前后会有如此大的变化,说明科学技术才是推动南瓜产业发展的支撑力量。南瓜拥有丰富的基因库,品种、形态非常多样,生物多样性极其突出,堪称“多样性之最”,因此造成了不同地区南瓜称谓混乱、名实混杂,以及正名与别称长期共存的现象,对南瓜的名称进行考释,可以理清其命名原由等问题。同时,南瓜与同为南瓜属的美洲同源作物笋瓜、西葫芦的对比以及对南瓜的品种资源的梳理,都有助于更准确的认识南瓜本土化过程。南瓜传入中国不久,劳动人民便通过认真观察、总结,创新出了关于的南瓜的选种育种、播种育苗、定植、田间管理、病虫害防治和采收的一整套栽培技术体系,以及贮藏、食用、药用和饲用等多方面的南瓜加工、利用技术体系,体现了劳动人民伟大的智慧和我国传统农业的包容性,这些关于南瓜的技术经验和基本成就,对于现代南瓜生产仍具有一定现实意义,是我国重要的农业遗产。即使新中国成立之后的南瓜技术成就,受现代自然科学影响越来越深,也还是能看出传统技术深深的烙印。南瓜是美洲作物中的“急先锋”,引种和本土化速度为美洲作物之最,有着深刻的动因:前提因素是自然生态因素(生态适应性、生理适应性),最重要因素是救荒因素,移民因素是加速因素,经济因素是长期以来一直存在的因素且作用越来越大,对夏季蔬菜的强烈需求是社会发展的必然因素。南瓜引种和本土化产生了诸多影响,意义深远:对救荒、备荒的影响是南瓜在历史时期最重要的影响,在全国任何地区均是如此,养活了无数的人口;对农业生产产生了潜移默化的影响,改变了我国传统蔬菜作物结构,完善了传统农业种植制度;对经济的影响,是对当今社会最重要的影响,历史上就从来不乏依靠南瓜牟利的人群,如今,南瓜产前—生产—加工—市场,已经形成了完整产业链,构成了南瓜产业迅速发展的主要动力;对传统医学的影响同样不容忽视,晚明以降南瓜就一直是重要的中药材,不但充实了祖国传统医学的理论基础,更在救死扶伤方面建树颇多,对传统医学影响很大;最后便是对文化的影响,南瓜文化丰富多彩,创造了不同的文化内涵,造就了多样的文化符号,组成了中国传统文化的一部分。
二、保护地西葫芦常见病害症状识别与防治(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、保护地西葫芦常见病害症状识别与防治(论文提纲范文)
(1)假茄科雷尔氏菌对瓜类作物的致病性以及南瓜响应病菌侵染的转录组和代谢组分析(论文提纲范文)
摘要 |
ABSTRACT |
1 前言 |
1.1 植物青枯菌的寄主范围 |
1.2 葫芦科植物青枯病的研究概述 |
1.3 病菌与植物寄主互作的机制概述 |
1.4 转录组学在植物抗病机制研究中的应用 |
1.5 代谢组学在植物抗病机制研究中的应用 |
1.6 转录组学和代谢组学关联分析在植物抗病研究中的应用 |
1.7 本研究的目的意义 |
1.8 本研究的技术路线 |
2 材料与方法 |
2.1 材料 |
2.1.1 供试菌株 |
2.1.2 供试培养基 |
2.1.3 主要试剂盒 |
2.1.4 供试作物 |
2.1.5 主要试验仪器 |
2.2 方法 |
2.2.1 不同寄主来源青枯菌菌株对瓜类作物的致病性测定 |
2.2.2 Cq01 和GMI1000 菌株侵染对南瓜防御相关生理生化反应影响的测定 |
2.2.3 南瓜响应Cq01 和GMI1000 菌株侵染的转录组测序分析 |
2.2.4 南瓜响应Cq01 和GMI1000 菌株侵染的代谢组分差异分析 |
2.2.5 数据处理方法 |
3 结果与分析 |
3.1 青枯菌对瓜类作物的致病性 |
3.1.1 不同寄主来源菌株对3 种瓜类作物的致病性 |
3.1.2 菌株所属的生理小种类型 |
3.1.3 对南瓜具有无致病性和强致病力的菌株 |
3.1.4 Cq01 和GMI1000 菌株在南瓜根系的侵入菌量 |
3.2 Cq01 和GMI1000 菌株对南瓜防御相关的生理生化特性的影响 |
3.2.1 H_2O_2的变化 |
3.2.2 过敏性坏死细胞检测结果 |
3.2.3 Cq01和GMI1000 菌株对南瓜植株MAD含量的影响 |
3.2.4 Cq01和GMI1000 菌株对南瓜植株PAL酶活性的影响 |
3.2.5 Cq01和GMI1000 菌株对南瓜植株POD酶活性的影响 |
3.2.6 Cq01和GMI1000 菌株对南瓜植株SOD酶活性的影响 |
3.2.7 Cq01和GMI1000 菌株对南瓜植株PPO酶活性的影响 |
3.2.8 Cq01和GMI1000 菌株对南瓜植株CAT酶活性的影响 |
3.3 南瓜响应Cq01 和GMI1000 菌株侵染的转录组测序分析 |
3.3.1 RNA质量检测分析 |
3.3.2 测序数据和组装结果分析 |
3.3.3 基因表达分析 |
3.3.4 差异表达基因筛选 |
3.3.5 差异表达基因GO注释 |
3.3.6 差异表达基因KEGG注释 |
3.3.7 qRT-PCR验证差异表达基因 |
3.4 南瓜响应Cq01 和GMI1000 菌株侵染的代谢组分析 |
3.4.1 主成分分析 |
3.4.2 正交偏最小二乘法-判别分析 |
3.4.3 差异代谢物的筛选 |
3.4.4 差异代谢物的KEGG注释 |
3.4.5 转录组和代谢组关联分析 |
4 讨论与结论 |
4.1 讨论 |
4.1.1 青枯菌对瓜类作物的致病性及其生理小种 |
4.1.2 Cq01 和GMI1000 菌株对南瓜生理生化特性的影响 |
4.1.3 南瓜响应Cq01 和GMI1000 菌株侵染的转录组测序分析 |
4.1.4 南瓜响应Cq01 和GMI1000 菌株侵染的代谢组分析 |
4.1.5 南瓜响应Cq01 和GMI1000 菌株侵染的转录组和代谢组关联分析 |
4.2 结论 |
4.3 创新点 |
参考文献 |
致谢 |
攻读学位期间发表的学术论文 |
(2)红三叶抗白粉病的生理和分子机制及抗病基因TpGDSL的克隆与遗传转化(论文提纲范文)
摘要 |
SUMMARY |
主要符号对照表 |
第一章 文献综述 |
1 引言 |
2 红三叶主要病虫害、作物白粉病及病原菌鉴定的研究进展 |
2.1 红三叶主要病虫害 |
2.2 白粉病研究进展 |
2.3 病原菌鉴定研究进展 |
3 寄主植物-病原菌互作的转录组学研究进展 |
3.1 转录组学 |
3.2 转录组学在寄主植物与病害研究中的进展 |
4 植物抗病机制与GDSL脂肪酶的研究进展 |
4.1 作物病害生理生化反应研究进展 |
4.2 植物结构抗性研究进展 |
4.3 植物内源激素抗病性响应研究进展 |
4.4 GDSL脂肪酶基因研究进展 |
5 选题依据与意义 |
5.1 选题依据 |
5.2 主要研究内容 |
5.3 主要技术路线 |
第二章 红三叶抗白粉病的生理响应机制 |
前言 |
第一节 红三叶白粉菌分离、鉴定 |
1 材料与方法 |
1.1 材料 |
1.2 病害症状观察 |
1.3 病原菌形态学观察 |
1.4 病原菌rDNA-ITS片段的PCR扩增和序列测定 |
2 结果与分析 |
2.1 病害症状与病原菌形态特征观察 |
2.2 rDNA ITS片段的扩增与测序 |
3 讨论 |
4 小结 |
第二节 红三叶抗白粉病生理基础 |
1 材料与方法 |
1.1 实验材料及仪器 |
1.2 测定方法 |
1.3 数据处理 |
2 结果与分析 |
2.1 单因素处理间红三叶的生理生化差异 |
2.2 二因素交互作用间红三叶的生理生化差异 |
2.3 人工接菌×抗病性×接菌后时间交互作用间红三叶生理生化的差异 |
3 讨论 |
4 小结 |
第三节 白粉菌侵染后红三叶内源激素的变化 |
1 材料与方法 |
1.1 试验材料 |
1.2 测定项目与方法 |
1.3 色谱条件及流动相的选择 |
1.4 数据统计与分析 |
2 结果与分析 |
2.1 标准样品保留时间?回归方程和决定系数 |
2.2 单因素处理间各内源激素的差异 |
2.3 二因素交互作用间各内源激素的差异 |
2.4 人工接菌×抗病性×浸染时间交互作用间红三叶内源激素的差异 |
3 讨论 |
4 小结 |
第三章 红三叶响应白粉菌侵染的结构抗病性 |
前言 |
第一节 红三叶抗白粉病的细胞结构变化规律 |
1 材料与方法 |
1.1 试验材料 |
1.2 试验方法 |
1.3 数据处理 |
2 结果与分析 |
2.1 白粉病不同抗性红三叶叶片显微结构 |
2.2 不同红三叶抗性材料叶片组织结构特征 |
3 讨论 |
4 小结 |
第二节 白粉菌侵染后红三叶叶片细胞壁成份变化 |
1 材料与方法 |
1.1 试验材料 |
1.2 试验方法 |
1.3 数据分析 |
2 结果与分析 |
2.1 单因素处理间红三叶叶片细胞壁组分的差异 |
2.2 二因素交互作用间红三叶叶片细胞壁组分的差异 |
2.3 人工接菌×抗病性×浸染时间交互作用间红三叶叶片细胞壁组分的差异 |
3 讨论 |
4 小结 |
第四章 红三叶抗白粉病的分子机制及TpGDSL基因的克隆与遗传转化 |
前言 |
第一节 红三叶抗白粉病的转录组分析 |
1 材料与方法 |
1.1 供试材料与试验设计 |
1.2 测序样品准备和RNA提取 |
1.3 建库、测序及信息分析 |
1.4 测序数据质控与转录组组装 |
1.5 Unigene的注释 |
1.6 差异表达基因数字分析 |
1.7 基因功能注释及通路富集 |
1.8 差异表达基因的qRT-PCR分析 |
2 结果与分析 |
2.1 RNA-seq结果的实时定量PCR验证 |
2.2 转录组组装与注释 |
2.3 差异表达基因(DEGs)分析 |
2.4 接种白粉菌后DEGs的GO富集分析 |
2.5 接种白粉菌后DEGs的KEGG富集分析 |
2.6 白粉菌侵染红三叶叶片诱导的 DEGs的 Map Man分析 |
3 讨论 |
4 小结 |
第二节 红三叶抗白粉病TpGDSL基因克隆与遗传转化 |
1 材料与方法 |
1.1 供试材料 |
1.2 试验方法 |
1.2.1 红三叶TpGDSL基因克隆 |
1.2.2 构建表达载体 |
1.2.3 红三叶抗白粉病基因TpGDSL遗传转化拟南芥 |
1.2.4 拟南芥T_1代阳性植株鉴定 |
1.2.5 目的基因生物信息学分析 |
2 结果 |
2.1 TpGDSL基因阳性克隆鉴定 |
2.2 TpGDSL基因的核苷酸序列分析 |
2.3 TpGDSL基因编码蛋白的一级结构分析 |
2.4 TpGDSL基因编码蛋白的二级结构分析 |
2.5 TpGDSL基因编码蛋白的三级结构分析 |
2.6 TpGDSL基因克隆与表达载体构建 |
2.7 转基因拟南芥T_1阳性鉴定 |
3 讨论 |
4 小结 |
第五章 结论与研究展望 |
1 结论 |
2 创新点 |
3 研究展望 |
参考文献 |
附录 |
致谢 |
作者简介 |
导师简介 |
(3)基于黄瓜花叶病毒构建双联和三联弱毒疫苗的研究(论文提纲范文)
符号说明 |
中文摘要 |
Abstract |
1 前言 |
1.1 我国常见的烟草病毒病种类 |
1.1.1 黄瓜花叶病毒 |
1.1.1.1 生物学特性 |
1.1.1.2 基因组结构 |
1.1.1.3 株系划分 |
1.1.1.4 危害症状 |
1.1.2 烟草花叶病毒 |
1.1.2.1 生物学特性 |
1.1.2.2 基因组结构 |
1.1.2.3 株系划分 |
1.1.2.4 危害症状 |
1.1.3 马铃薯Y病毒 |
1.1.3.1 生物学特性 |
1.1.3.2 基因组结构 |
1.1.3.3 株系划分 |
1.1.3.4 危害症状 |
1.1.4 马铃薯X病毒 |
1.1.4.1 生物学特性 |
1.1.4.2 基因组结构 |
1.1.4.3 株系划分 |
1.1.4.4 危害症状 |
1.1.5 烟草脉带花叶病毒 |
1.1.5.1 生物学特性 |
1.1.5.2 基因组结构 |
1.1.5.3 危害症状 |
1.2 烟草病毒病的防治措施 |
1.2.1 传统防治措施 |
1.2.2 利用抗病毒基因工程防治 |
1.2.2.1 RNAi技术 |
1.2.2.2 卫星RNA介导的病毒抗性 |
1.2.2.3 植物细胞工程技术 |
1.2.3 利用弱毒疫苗的交叉保护防治 |
1.3 交叉保护 |
1.3.1 交叉保护机制 |
1.3.2 弱毒株系的分离方式 |
1.3.2.1 自然分离 |
1.3.2.2 高温处理 |
1.3.2.3 亚硝酸处理 |
1.3.2.4 紫外线照射处理 |
1.3.2.5 利用卫星RNA组建弱毒株系 |
1.3.2.6 利用现代分子生物学技术构建 |
1.3.3 交叉保护的应用 |
1.3.4 影响交叉保护效果的因素 |
1.4 本研究的目的与意义 |
2 材料与方法 |
2.1 材料 |
2.1.1 质粒、菌株及毒源 |
2.1.2 供试植物、蚜虫 |
2.1.3 分子生物学试剂 |
2.1.4 主要实验仪器 |
2.1.5 引物及测序 |
2.2 试验方法 |
2.2.1 植物总RNA提取——TransZol试剂提取法 |
2.2.2 反转录聚合酶链式反应(RT-PCR) |
2.2.3 重叠PCR |
2.2.4 菌落PCR |
2.2.5 酶切反应 |
2.2.6 核酸的沉淀和浓缩 |
2.2.7 DNA片段的纯化 |
2.2.8 同源重组 |
2.2.9 连接反应 |
2.2.10 大肠杆菌感受态细胞的制备(DH5α) |
2.2.11 大肠杆菌感受态细胞的转化(DH5α) |
2.2.12 质粒提取(碱裂解法) |
2.2.13 农杆菌感受态细胞的制备(GV3101) |
2.2.14 农杆菌感受态细胞的转化(GV3101) |
2.2.15 病毒接种 |
2.2.15.1 农杆菌注射接种法 |
2.2.15.2 机械摩擦接种法 |
3 结果与分析 |
3.1 基于CMV_(Fny)RNA2的双联弱毒疫苗的构建与评价 |
3.1.1 兼抗CMV/TMV的双联弱毒疫苗的构建与评价 |
3.1.1.1 TMV片段插入型CMV RNA2弱毒突变体的构建 |
3.1.1.2 TMV片段插入型CMV RNA2弱毒突变体的稳定性分析 |
3.1.1.3 TMV片段插入型CMV RNA2弱毒突变体的交叉保护作用评价 |
3.1.2 兼抗CMV/TCV的双联弱毒疫苗的构建与评价 |
3.1.2.1 TCV片段插入型CMV RNA2弱毒突变体的构建 |
3.1.2.2 TCV片段插入型CMV RNA2弱毒突变体的稳定性分析 |
3.1.2.3 TCV片段插入型CMV RNA2弱毒突变体的交叉保护作用评价 |
3.1.3 兼抗CMV/TSWV的双联弱毒疫苗的构建与评价 |
3.1.3.1 TSWV片段插入型CMV RNA2弱毒突变体的构建 |
3.1.3.2 TSWV片段插入型CMV RNA2弱毒突变体的稳定性分析 |
3.1.3.3 TSWV片段插入型CMV RNA2弱毒突变体交叉保护作用评价 |
3.1.4 兼抗CMV/TMV的100 bp双联弱毒疫苗的构建与评价 |
3.1.4.1 TMV100 bp片段插入型CMV RNA2弱毒突变体的构建 |
3.1.4.2 TMV100 bp片段插入型CMV RNA2弱毒突变体的稳定性分析 |
3.1.4.3 TMV100bp片段插入型CMV RNA2弱毒突变体的交叉保护作用评价 |
3.2 基于CMV_(Fny)RNA2 的三联弱毒疫苗的构建与评价 |
3.2.1 兼抗CMV/TMV/PVX的三联弱毒疫苗的构建与评价 |
3.2.1.1 TMV/PVX片段插入型CMV RNA2弱毒突变体的构建 |
3.2.1.2 TMV/PVX片段插入型CMN RNA2弱毒突变体的稳定性及交叉保护效果分析 |
3.2.2 兼抗CMV/TMV/PVY的三联弱毒疫苗的构建与评价 |
3.2.2.1 TMV/PVY片段插入型CMV RNA2弱毒突变体的构建 |
3.2.2.2 TMV/PVY片段插入型CMV RNA2弱毒突变体的稳定性及交叉保护效果分析 |
3.2.3 兼抗CMV/TMV/TVBMV的三联弱毒疫苗的构建与评价 |
3.2.3.1 TMV/TVBMV片段插入型CMV RNA2弱毒突变体的构建 |
3.2.3.2 TMV/TVBMV片段插入型CMN RNA2弱毒突变体稳定性及交叉保护效果分析 |
3.3 基于CMV_(Fny)RNA3的CP蛋白和蚜传位点突变体构建及作用评价 |
3.3.1 基于CMV_(Fny)RNA3 CP的缺失型突变体构建与评价 |
3.3.1.1 CP蛋白全部缺失型突变体的构建 |
3.3.1.2 CP蛋白全部缺失型突变体稳定性评价 |
3.3.1.3 CP蛋白部分序列缺失型突变体的构建 |
3.3.1.4 CP蛋白部分序列缺失型突变体稳定性评价 |
3.3.2 基于CMV_(Fny)RNA3 CP的提前终止型突变体构建与评价 |
3.3.2.1 CP蛋白提前终止型突变体的构建 |
3.3.2.2 CP蛋白提前终止型突变体稳定性评价 |
3.3.3 基于CMV_(Fny)RNA3基因间隔区的突变体构建与评价 |
3.3.3.1 IGR部分缺失型突变体的构建 |
3.3.3.2 IGR部分缺失型突变体稳定性评价 |
3.3.4 基于CMV_(Fny)RNA3的蚜传关键位点突变与稳定性分析 |
3.3.4.1 蚜传关键位点突变体的构建 |
3.3.4.2 蚜传关键位点突变体稳定性评价 |
4 讨论 |
4.1 弱毒疫苗在本生烟上的接种时间和交叉保护效果比较 |
4.2 三联弱毒疫苗交叉保护效果不明显 |
4.3 RNA3 突变体存在完全恢复现象 |
4.4 影响CMV_(Fny)蚜传效率的原因 |
5 结论 |
参考文献 |
附录 |
附录1 引物列表 |
附录2 质粒列表 |
致谢 |
攻读学位期间发表论文情况 |
(4)小麦白粉病菌对环氟菌胺抗性风险评估及防效评价(论文提纲范文)
符号说明 |
中文摘要 |
Abstract |
1 前言 |
1.1 小麦 |
1.2 环氟菌胺杀菌剂的应用现状 |
1.3 小麦白粉病的发生及研究进展 |
1.3.1 小麦白粉病形态 |
1.3.2 小麦白粉病的发病过程 |
1.3.3 小麦白粉病病害循环 |
1.4 小麦白粉病的防控 |
1.5 研究目的及意义 |
2 材料与方法 |
2.1 供试药剂、试剂及主要仪器 |
2.1.1 供试药剂、试剂 |
2.1.2 主要仪器 |
2.1.3 供试小麦品种 |
2.1.4 供试菌株 |
2.1.5 供试药剂 |
2.2 室内试验设计 |
2.2.1 小麦试管苗的培育 |
2.2.2 小麦白粉病对环氟菌胺敏感性测定 |
2.2.3 小麦白粉病病原菌对环氟菌胺敏感基线的建立 |
2.2.4 小麦白粉病菌抗环氟菌胺突变体的获得 |
2.2.5 环氟菌胺与5 种杀菌剂的交互抗性测定 |
2.2.6 抗性菌株适合度测定 |
2.3 常用药剂混配筛选 |
2.3.1 药剂配置 |
2.3.2 试验处理 |
2.3.3 试验数据处理 |
2.4 大田试验设计 |
2.4.1 田间条件下环氟菌胺对小麦白粉病的防效 |
2.4.2 田间条件下环氟菌胺对小麦产量的影响 |
2.5 数据统计分析 |
3 结果与分析 |
3.1 小麦白粉病病菌对环氟菌胺的敏感性 |
3.1.1 不同试验方式小麦白粉病菌对环氟菌胺敏感性差异 |
3.1.2 小麦白粉病病菌对环氟菌胺的敏感基线 |
3.2 小麦白粉病菌对环氟菌胺抗性风险评估 |
3.2.1 抗性突变体的获得 |
3.2.2 抗性突变体的交互抗性 |
3.2.3 抗性菌株的生物学性状 |
3.2.3.1 抗药性遗传稳定性 |
3.2.3.2 抗性菌株的产孢和萌发 |
3.2.3.3 抗性菌株的致病力 |
3.2.3.4 抗性风险系数评估 |
3.3 混配药剂筛选试验 |
3.3.1 单剂对小麦白粉病毒力测定 |
3.3.2 药剂混配对小麦白粉病毒力测定 |
3.4 大田试验 |
3.4.1 田间条件下环氟菌胺对小麦白粉病的防效 |
3.4.2 田间条件下环氟菌胺对小麦产量的影响 |
4 讨论 |
4.1 不同小麦产区小麦白粉病菌对环氟菌胺的敏感性 |
4.2 小麦白粉病病菌对环氟菌胺的抗性风险评估 |
4.3 不同药剂混配对小麦白粉病菌毒力 |
4.4 田间条件下环氟菌胺对小麦白粉病的防效和产量的影响 |
5 结论 |
5.1 小麦白粉病病菌对环氟菌胺的敏感性 |
5.2 小麦白粉病菌对环氟菌胺抗性风险评估 |
5.3 不同药剂混配对小麦白粉病菌毒力 |
5.4 田间条件下环氟菌胺对小麦白粉病的防效和产量的影响 |
本研究的创新之处 |
有待解决的问题 |
参考文献 |
致谢 |
攻读硕士期间发表的论文情况 |
(5)草地早熟禾抗白粉病机理研究(论文提纲范文)
摘要 |
SUMMARY |
缩略词表 |
第一章 文献综述 |
1 植物白粉病研究进展 |
1.1 白粉病病原菌研究 |
1.2 白粉菌的侵染过程及致病机理研究 |
1.3 白粉病发病条件及发病症状 |
1.3.1 发病条件 |
1.3.2 发病症状 |
1.4 白粉病的防治策略 |
1.4.1 化学防治 |
1.4.2 物理防治 |
1.4.3 生物防治 |
1.4.4 农业防治 |
1.5 草地早熟禾白粉病研究进展 |
2 植物抗病机理研究进展 |
2.1 植物形态结构抗病性 |
2.1.1 固有结构与植物抗病性 |
2.1.2 诱导结构与植物抗病性 |
2.2 植物生理生化抗病性 |
2.2.1 过敏反应与植物抗病性 |
2.2.2 防御酶与植物抗病性 |
2.2.3 植保素与植物抗病性 |
2.2.4 内源激素与植物抗病性 |
2.2.5 病程相关蛋白PRs与植物抗病性 |
2.3 植物与病原菌的互作机制 |
2.3.1 由病原菌模式分子触发的免疫反应(PTI) |
2.3.2 由效应因子触发的免疫反应(ETI) |
3 转录组学和蛋白组学在植物抗病机制研究中的应用 |
3.1 转录组学在植物抗病机制研究中的应用 |
3.2 蛋白质组学在植物抗病机制研究中的应用 |
3.3 转录组学与蛋白组学的整合研究在植物抗病机制研究中的应用 |
4 研究内容和拟解决的关键问题 |
4.1 拟解决的关键问题 |
4.2 研究内容 |
5 本研究的目的意义和技术路线 |
第二章 草地早熟禾抗白粉病品种筛选及抗性评价 |
前言 |
2.1 材料与方法 |
2.1.1 试验材料 |
2.1.2 试验设计 |
2.1.3 测定指标及方法 |
2.1.4 数据分析 |
2.2 结果与分析 |
2.2.1 白粉病侵染对不同草地早熟禾品种发病率和病情指数的影响 |
2.2.2 不同草地早熟禾品种对白粉病的抗性评价及聚类分析 |
2.3 讨论 |
2.4 小结 |
第三章 白粉病侵染对草地早熟禾幼苗生长及生理特性的影响 |
前言 |
3.1 材料与方法 |
3.1.1 试验材料 |
3.1.2 试验设计 |
3.1.3 测定指标及方法 |
3.1.4 数据分析 |
3.2 结果与分析 |
3.2.1 白粉病侵染对草地早熟禾幼苗表型、发病率和病情指数的影响 |
3.2.2 白粉病侵染对草地早熟禾幼苗生长的影响 |
3.2.3 白粉病侵染对草地早熟禾幼苗相对含水量和干物质积累量的影响 |
3.2.4 白粉病侵染对草地早熟禾幼苗相对电导率和丙二醛含量的影响 |
3.2.5 白粉病侵染对草地早熟禾幼苗渗透调节物质含量的影响 |
3.2.6 白粉病侵染对草地早熟禾幼苗活性氧积累的影响 |
3.2.7 白粉病侵染对草地早熟禾幼苗抗氧化酶活性的影响 |
3.2.8 白粉病侵染对草地早熟禾幼苗非酶抗氧化物质含量的影响 |
3.2.9 白粉病侵染对草地早熟禾幼苗苯丙烷代谢关键酶活性的影响 |
3.2.10 白粉病侵染对草地早熟禾幼苗次生代谢物质合成的影响 |
3.3 讨论 |
3.3.1 细胞膜脂过氧化程度与草地早熟禾抗病性的关系 |
3.3.2 渗透调节物质与草地早熟禾抗病性的关系 |
3.3.3 抗氧化系统与草地早熟禾抗病性的关系 |
3.3.4 苯丙烷代谢与草地早熟禾抗病性的关系 |
3.3.5 次生代谢物质合成与草地早熟禾抗病性的关系 |
3.4 小结 |
第四章 白粉病侵染对草地早熟禾幼苗光合特性及碳水化合物代谢的影响 |
前言 |
4.1 材料与方法 |
4.1.1 试验材料 |
4.1.2 试验设计 |
4.1.3 测定指标及方法 |
4.1.4 数据分析 |
4.2 结果与分析 |
4.2.1 白粉病侵染对草地早熟禾幼苗叶绿素含量的影响 |
4.2.2 白粉病侵染对草地早熟禾幼苗光合气体交换参数的影响 |
4.2.3 白粉病侵染对草地早熟禾幼苗叶绿素荧光参数的影响 |
4.2.4 白粉病侵染对草地早熟禾幼苗光合作用关键酶活性的影响 |
4.2.5 白粉病侵染对草地早熟禾幼苗糖积累的影响 |
4.2.6 白粉病侵染对草地早熟禾幼苗蔗糖代谢相关酶活性的影响 |
4.3 讨论 |
4.3.1 光合特性与草地早熟禾抗病性的关系 |
4.3.2 糖代谢与草地早熟禾抗病性的关系 |
4.4 小结 |
第五章 草地早熟禾应答白粉病侵染的转录组学差异 |
前言 |
5.1 材料与方法 |
5.1.1 试验材料 |
5.1.2 试验设计 |
5.1.3 转录组学分析 |
5.2 结果与分析 |
5.2.1 测序结果统计 |
5.2.2 Unigenes功能分析 |
5.2.3 差异表达基因(DEGs)统计与分析 |
5.2.4 差异表达基因(DEGs)的GO功能富集分析 |
5.2.5 差异表达基因(DEGs)的KEGG通路富集分析 |
5.2.6 转录组分析的q RT-PCR验证 |
5.3 讨论 |
5.3.1 植物-病原体相互作用通路分析 |
5.3.2 苯丙烷类生物合成通路分析 |
5.3.3 谷胱甘肽代谢通路分析 |
5.3.4 类黄酮生物合成通路分析 |
5.4 小结 |
第六章 草地早熟禾应答白粉病侵染的蛋白质组学差异 |
前言 |
6.1 材料与方法 |
6.1.1 试验材料 |
6.1.2 试验设计 |
6.1.3 蛋白质组学分析 |
6.1.4 蛋白组和转录组学关联分析 |
6.2 结果与分析 |
6.2.1 蛋白质鉴定质量评估 |
6.2.2 差异积累蛋白质(DAPs)统计分析 |
6.2.3 差异积累蛋白(DAPs)的GO富集分析 |
6.2.4 差异积累蛋白(DAPs)的KEGG富集分析 |
6.2.5 差异积累蛋白(DAPs)对应基因的表达情况分析 |
6.2.6 蛋白组和转录组学关联分析 |
6.2.7 候选基因的鉴定 |
6.2.8 草地早熟禾对白粉病侵染的应答机制分析 |
6.3 讨论 |
6.4 小结 |
第七章 结论与创新点 |
7.1 全文结论 |
7.2 主要创新点 |
7.3 展望 |
参考文献 |
附图 |
致谢 |
作者简介 |
在读期间发表论文和研究成果等 |
导师简介 |
(6)西瓜花叶病毒遗传多样性及长距离移动决定因子研究(论文提纲范文)
中文摘要 |
英文摘要 |
1 前言 |
1.1 西瓜花叶病毒(WMV)研究进展 |
1.1.1 分布与危害 |
1.1.2 寄主范围及传播途径 |
1.1.3 株系划分 |
1.1.4 基因组结构及蛋白功能 |
1.2 WMV的检测 |
1.2.1 生物学方法 |
1.2.2 分子生物学方法 |
1.2.3 电镜观察法 |
1.2.4 血清学方法 |
1.3 WMV防治现状 |
1.3.1 农业防治 |
1.3.2 化学防治 |
1.3.3 培育与种植抗病品种 |
1.4 病毒寄主范围特异性研究进展 |
1.5 本研究的目的和意义 |
2 材料与方法 |
2.1 实验材料 |
2.1.1 毒原及植物材料 |
2.1.2 主要菌株、载体和试剂 |
2.1.3 主要实验仪器 |
2.2 实验方法 |
2.2.1 WMV CP抗血清的制备 |
2.2.2 WMV臭椿和西葫芦分离物的生物学分析 |
2.2.3 WMV臭椿和西葫芦分离物全基因组遗传多样性分析 |
2.2.4 WMV分离物CN:ZUC-JN:17 全长侵染性cDNA克隆的构建 |
2.2.5 P1 基因在WMV长距离移动中的作用分析 |
2.2.6 葫芦科作物品种对WMV的抗病性鉴定 |
3 结果与分析 |
3.1 WMV CP抗血清的制备及应用 |
3.1.1 WMV CP基因原核表达载体的构建 |
3.1.2 WMV CP的原核表达分析 |
3.1.3 WMV CP抗血清特异性分析 |
3.1.4 WMV CP抗血清灵敏度及效价分析 |
3.1.5 抗血清的应用 |
3.2 WMV臭椿和西葫芦分离物的生物学特性 |
3.3 WMV臭椿和西葫芦全基因组遗传多样性分析 |
3.3.1 基因组特征分析 |
3.3.2 WMV分离物的核苷酸和氨基酸一致率分析 |
3.3.3 WMV CN:AIL-TA:17和CN:ZUC-JN:17 多聚蛋白氨基酸序列比较 |
3.3.4 重组分析 |
3.3.5 系统发育关系分析 |
3.3.6 序列相似性分析 |
3.4 WMV西葫芦分离物侵染性cDNA克隆的构建 |
3.4.1 WMV全长cDNA克隆的构建 |
3.4.2 WMV全长cDNA克隆侵染性分析 |
3.5 葫芦科作物品种对WMV的抗性分析 |
3.6 P1在WMV侵染本氏烟过程中的作用分析 |
3.6.1 自然突变体的获得 |
3.6.2 异源P1的WMV嵌合体突变体的获得 |
3.6.3 嵌合体突变体pCaZUC-JN-AIL-TA-P1 在本氏烟上的侵染性鉴定 |
4 讨论 |
4.1 高质量抗血清在病毒病监测预警过程中具有重要作用 |
4.2 中国西瓜花叶病毒分离物存在遗传多样性 |
4.3 侵染性cDNA克隆是研究植物RNA病毒的重要工具 |
4.4 培育和种植抗性品种是防治WMV的关键 |
4.5 WMV P1 基因在决定长距离移动过程中具有重要作用 |
5 结论 |
参考文献 |
附录 |
致谢 |
攻读学位期间发表论文情况 |
(7)小西葫芦黄花叶病毒遗传多样性及致病力分析(论文提纲范文)
中文摘要 |
英文摘要 |
1 引言 |
1.1 ZYMV的发现 |
1.2 ZYMV的症状 |
1.2.1 不同寄主的症状 |
1.2.2 温度及苗龄对症状的影响 |
1.2.3 复合侵染加重病毒症状 |
1.2.4 HCpro是决定致病的关键基因 |
1.3 ZYMV的基因组结构与蛋白功能 |
1.3.1 辅助成分蛋白酶(HCpro)的功能 |
1.3.2 外壳蛋白(CP)的功能 |
1.4 ZYMV的遗传进化分析 |
1.5 ZYMV的分布及传播 |
1.5.1 ZYMV的分布 |
1.5.2 ZYMV的传播 |
1.6 ZYMV的防治方法 |
1.6.1 控制蚜虫传播 |
1.6.2 化学防治 |
1.6.3 交叉保护 |
1.6.4 基因工程 |
1.6.5 加强监管检测 |
1.6.6 种子脱毒及选用抗病品种 |
1.7 研究的目的及意义 |
2 材料与方法 |
2.1 实验材料 |
2.1.1 毒原 |
2.1.2 供试植物 |
2.1.3 主要菌株与载体 |
2.1.4 主要试剂及仪器 |
2.2 实验方法 |
2.2.1 ZYMV CP抗血清的制备 |
2.2.2 ZYMV全基因组序列测定与分析 |
2.2.3 ZYMV全长c DNA侵染性克隆构建 |
2.2.4 WxxxG基序对ZYMV HCpro的作用分析 |
2.2.5 葫芦科品种对ZYMV的抗性鉴定 |
3 结果与分析 |
3.1 ZYMV CP抗血清的制备及应用 |
3.1.1 ZYMV CP克隆与原核表达 |
3.1.2 抗血清制备及其效价、灵敏度 |
3.1.3 抗血清的特异性 |
3.1.4 抗血清的应用 |
3.2 ZYMV山东分离物全基因组序列克隆与分析 |
3.2.1 南瓜、丝瓜病叶RT-PCR检测结果 |
3.2.2 CN:Cm:17和CN:Lc:17 分离物全基因组结构 |
3.2.3 序列一致率 |
3.2.4 重组分析 |
3.2.5 系统进化发育关系 |
3.2.6 序列相似性 |
3.3 ZYMV南瓜分离物全长c DNA侵染性克隆的获得 |
3.3.1 ZYMV全长c DNA克隆的获得 |
3.3.2 ZYMV全长c DNA克隆侵染性验证 |
3.3.3 ZYMV侵染性克隆表达绿色荧光蛋白 |
3.4 WxxxG基序对症状形成及抑制RNA沉默活性的影响 |
3.4.1 WxxxG基序对ZYMV致病症状的影响 |
3.4.2 WxxxG基序对ZYMV病毒积累量的影响 |
3.4.3 WxxxG基序对ZYMV HCpro RNA沉默抑制活性影响 |
3.5 不同葫芦科品种对ZYMV抗病性 |
4 讨论 |
4.1 ZYMV存在遗传多样性 |
4.2 加强病毒病检测是防治ZYMV的有效途径 |
4.3 筛选抗病品种可为抗病育种提供种质资源 |
4.4 HCpro WxxxG在 ZYMV侵染过程中具有重要作用 |
5 结论 |
参考文献 |
附录 |
致谢 |
攻读学位期间发表论文情况 |
(8)温室西葫芦常见病害的发生与防治(论文提纲范文)
1 霜霉病 |
1.1 症状识别 |
1.2 发病规律 |
1.3 传播途径 |
1.4 防治措施 |
1.4.1 农业防治。 |
1.4.2 药剂防治。 |
2 灰霉病 |
2.1 症状识别 |
2.2 发病规律 |
2.3 传播途径 |
2.4 防治措施 |
2.4.1 农业防治。 |
2.4.2 药剂防治。 |
3 白粉病 |
3.1 症状识别 |
3.2 发病规律 |
3.3 传播途径 |
3.4 防治措施 |
3.4.1 农业防治。 |
3.4.2 药剂防治。 |
4 病毒病 |
4.1 症状识别 |
4.2 发病规律 |
4.3 传播途径 |
4.4 防治措施 |
4.4.1 选用抗病品种。 |
4.4.2 种子消毒。 |
4.4.3 茬口安排。 |
4.4.4 高温闷棚。 |
4.4.5 保护地育苗。 |
4.4.6 防止接触传染。 |
4.4.7 药剂防治。 |
5 缩叶病 |
5.1 症状识别 |
5.2 发病规律 |
5.3 防治措施 |
6 畸形果 |
6.1 症状识别 |
6.2 发病规律 |
6.3 防治措施 |
6.3.1 加强肥水管理。 |
6.3.2 注意调温控温。 |
6.3.3 人工授粉。 |
(9)北疆籽用西葫芦病毒病害调查及病毒种类鉴定和检测(论文提纲范文)
摘要 |
ABSTRACT |
中英符号缩略表 |
引言 |
第一章 文献综述 |
1.1 国内外葫芦科作物主要病毒病研究 |
1.1.1 黄瓜花叶病毒(CMV) |
1.1.2 小西葫芦黄花叶病毒(ZYMV) |
1.1.3 西瓜花叶病毒(WMV) |
1.1.4 番木瓜环斑病毒西瓜株系(PRSV-W) |
1.2 不同检测技术在葫芦科病毒病中的应用 |
1.2.1 生物学检测 |
1.2.2 血清学检测 |
1.2.3 电子显微镜检测 |
1.2.4 核酸杂交技术 |
1.2.5 RT-PCR及多重PCR技术 |
1.2.6 实时荧光定量PCR技术 |
1.3 本研究的目的及意义 |
第二章 石河子地区籽用西葫病毒病害发生情况的调查 |
2.1 调查地点 |
2.2 方法 |
2.2.1 田间病毒病发生发展调查 |
2.2.2 病毒病的症状类型及发病程度的调查 |
2.2.3 数据处理 |
2.3 结果与分析 |
2.3.1 籽用西葫芦病毒病症状调查 |
2.3.2 籽用西葫芦田间病毒病的发生及发展 |
2.3.3 不同种植区籽用西葫芦病毒病症状类型及分布 |
2.3.4 籽用西葫芦病毒病发病率及病情指数的调查 |
2.4 结论 |
2.5 讨论 |
第三章 籽用西葫芦病毒病原种类的分子鉴定与检测 |
3.1 材料与方法 |
3.1.1 试验材料 |
3.1.2 常用试剂及溶液的配制 |
3.1.3 引物合成 |
3.1.4 植物组织总RNA的提取 |
3.1.5 病毒c DNA合成及PCR反应 |
3.1.6 纯化PCR产物 |
3.1.7 PCR产物的克隆 |
3.1.8 PCR产物的连接、转化 |
3.1.9 重组质粒的鉴定 |
3.1.10 病毒的测序及分析 |
3.2 结果与分析 |
3.2.1 RNA提取 |
3.2.2 病毒种类的分子鉴定 |
3.2.2.1 RT-PCR检测病毒种类 |
3.2.2.2 籽用西葫芦病毒分离物与其他分离物同源性分析 |
3.2.3 籽用西葫芦病毒病毒原的分子检测 |
3.2.3.1 不同种植区籽用西葫芦病毒病毒原的检出率 |
3.2.3.2 不同种植区籽用西葫芦病毒病毒原的复合侵染率 |
3.2.3.3 籽用西葫芦病毒病症状对应的毒原种类 |
3.3 结论 |
3.4 讨论 |
第四章 多重PCR检测籽用西葫芦种子病毒及热处理脱毒效果分析 |
4.1 材料和方法 |
4.1.1 试验材料 |
4.1.2 试剂 |
4.1.3.设计并合成引物 |
4.1.4 建立多重PCR反应体系 |
4.1.4.1 优化多重PCR反应体系 |
4.1.4.2 检测多重PCR灵敏度 |
4.1.5 检测籽用西葫芦种子带毒率 |
4.1.5.1 籽用西葫芦幼苗的培育 |
4.1.5.2 RNA提取 |
4.1.5.3 多重PCR检测 |
4.1.5.4 PCR产物的克隆及测序 |
4.1.6 籽用西葫芦种子的热处理 |
4.1.6.1 热处理方法 |
4.1.6.2 分析热处理效果的方法 |
4.2 结果与分析 |
4.2.1 多重PCR反应体系的建立 |
4.2.1.1 多重PCR的特异性 |
4.2.1.2 多重PCR反应体系的优化 |
4.2.1.3 多重PCR的灵敏度 |
4.2.2 籽用西葫芦种子带毒检测 |
4.2.3 热处理对籽用西葫芦种子脱毒的影响 |
4.2.4 温度处理对种子发芽率及发芽势的影响 |
4.3 结论 |
4.4 讨论 |
第五章 全文小结 |
参考文献 |
附录A 常用化学试剂、分子生物学试剂及仪器 |
附录B 常用培养基及缓冲液配方 |
致谢 |
作者 简介 |
石河子大学硕士研究生学位论文导师评阅表 |
(10)南瓜在中国的引种和本土化研究(论文提纲范文)
摘要 ABSTRACT 绪论 |
一、选题的依据和意义 |
二、国内外研究动态 |
三、研究方法和资料来源 |
四、基本结构与研究重点 |
五、创新和存在的问题 第一章 南瓜的起源与传播 |
第一节 南瓜在美洲的起源与传播 |
一、美洲是南瓜的起源中心 |
二、南瓜在欧亚的传播 |
第二节 南瓜传入中国的时间和路径 |
一、南瓜传入中国的时间 |
二、南瓜传入中国的路径 第二章 南瓜的名实与品种资源 |
第一节 南瓜名称考释 |
一、南瓜的主要名称 |
二、南瓜的其他别称 |
第二节 南瓜属作物与南瓜品种资源 |
一、南瓜与笋瓜、西葫芦 |
二、南瓜的品种资源 第三章 南瓜在中国的引种和推广 |
第一节 南瓜在全国的引种路线 |
第二节 明清民国时期南瓜在各地区的引种和推广 |
一、南瓜在东北地区的引种和推广 |
二、南瓜在华北地区的引种和推广 |
三、南瓜在西北地区的引种和推广 |
四、南瓜在西南地区的引种和推广 |
五、南瓜在东南沿海的引种和推广 |
六、南瓜在长江中游地区的引种和推广 |
第三节 新中国成立后南瓜的生产和发展 |
一、南瓜在全国的生产概况 |
二、南瓜产业发展面临的机遇和挑战 第四章 南瓜生产技术本土化的发展 |
第一节 明清时期南瓜栽培技术的积累 |
一、播种育苗 |
二、定植 |
三、田间管理 |
四、病虫害防治 |
五、采收 |
第二节 民国时期南瓜生产技术的改进 |
一、选种育种 |
二、播种育苗 |
三、定植 |
四、田间管理 |
五、病虫害防治 |
六、采收 |
第三节 新中国成立后南瓜生产技术的发展 |
一、1949-1978年的发展 |
二、1979-2014年的发展 第五章 南瓜加工、利用技术本土化的发展 |
第一节 明清时期南瓜加工、利用技术的奠基 |
一、贮藏 |
二、食用 |
三、药用 |
四、饲用及其他利用方式 |
第二节 民国时期南瓜加工、利用技术的改进 |
一、贮藏 |
二、食用 |
三、药用 |
四、饲用及其他利用方式 |
第三节 新中国成立后南瓜加工、利用技术的发展 |
一、1949-1978年的发展 |
二、1979-2014年的发展 第六章 南瓜引种和本土化的动因分析 |
第一节 自然生态因素 |
一、生态适应性 |
二、生理适应性 |
第二节 救荒因素 |
一、南方地区 |
二、北方地区 |
第三节 移民因素 |
一、西南移民潮:“湖广填四川”与“改土归流” |
二、东南棚民潮:“客家棚民”与“江西填湖广” |
三、东北大移民:“招民开垦”与“闯关东” |
第四节 对夏季蔬菜的强烈需求 |
一、中国古代夏季蔬菜的品种增加 |
二、中国古代夏季蔬菜的品种增加的原因 |
第五节 经济因素 |
一、南瓜的相对经济优势 |
二、南瓜加工、利用的经济优势 |
三、南瓜其他利用方式的经济优势 第七章 南瓜引种和本土化对经济社会的影响 |
第一节 对救荒、备荒的影响 |
一、全国性的救荒影响 |
二、六大区的具体救荒影响 |
第二节 对农业生产的影响 |
一、改变了蔬菜作物结构 |
二、影响了农业种植制度 |
第三节 对经济的影响 |
一、直接南瓜贸易对经济的影响 |
二、南瓜子对经济的促进 |
三、南瓜众多深加工产品成为经济增长的亮点 |
四、南瓜与养殖业发展 第八章 南瓜引种和本土化对科技文化的影响 |
第一节 对传统医学的影响 |
一、基本性状的描述 |
二、同食相忌 |
三、具体应用 |
第二节 南瓜与文化 |
一、南瓜精神 |
二、南瓜民俗 |
三、南瓜观赏文化 |
四、南瓜名称文化 |
五、南瓜饮食文化 |
第三节 对文学创作的影响 |
一、明清时期的文学创作 |
二、民国时期的文学创作 |
三、新中国成立后的文学创作 结语 附录 参考文献 致谢 攻读学位期间发表的学术论文 |
四、保护地西葫芦常见病害症状识别与防治(论文参考文献)
- [1]假茄科雷尔氏菌对瓜类作物的致病性以及南瓜响应病菌侵染的转录组和代谢组分析[D]. 何永林. 广西大学, 2021(12)
- [2]红三叶抗白粉病的生理和分子机制及抗病基因TpGDSL的克隆与遗传转化[D]. 蒲小剑. 甘肃农业大学, 2021(01)
- [3]基于黄瓜花叶病毒构建双联和三联弱毒疫苗的研究[D]. 张雅雯. 山东农业大学, 2021(01)
- [4]小麦白粉病菌对环氟菌胺抗性风险评估及防效评价[D]. 杜庆志. 山东农业大学, 2021(01)
- [5]草地早熟禾抗白粉病机理研究[D]. 董文科. 甘肃农业大学, 2020(01)
- [6]西瓜花叶病毒遗传多样性及长距离移动决定因子研究[D]. 冀树娴. 山东农业大学, 2019(01)
- [7]小西葫芦黄花叶病毒遗传多样性及致病力分析[D]. 王健. 山东农业大学, 2019(01)
- [8]温室西葫芦常见病害的发生与防治[J]. 缪为文,沈金龙,闻舒,吉红艳. 现代农业科技, 2017(24)
- [9]北疆籽用西葫芦病毒病害调查及病毒种类鉴定和检测[D]. 任琛荣. 石河子大学, 2016(02)
- [10]南瓜在中国的引种和本土化研究[D]. 李昕升. 南京农业大学, 2015(06)