论文摘要
车牌识别技术种类繁多,理想情况下识别率已达到99%,而对于远距离模糊不清的抓拍图片,识别效果还不够,为此提出一种利用图像超分辨率重建技术提高模糊车牌识别率的方法。首先利用图像处理方法对图片进行分割;其次利用支持向量机(SVM)对分割得到的图块进行分类,筛选出车牌图块;再利用多帧低分辨率车牌图块进行最大后验估计(MAP)超分辨率重建,得到比较清晰、便于识别的车牌;最后利用人工神经网络(ANN)方法进行光学字符识别(OCR),最终得到识别结果。实验表明,与传统车牌识别技术相比,该方法具有更强的鲁棒性,且在模糊车牌识别中正确率明显提高。
论文目录
文章来源
类型: 期刊论文
作者: 骆立志,吴飞,曹琨,邬倩
关键词: 车牌识别,超分辨率,支持向量机,人工神经网络,图像识别
来源: 软件导刊 2019年05期
年度: 2019
分类: 信息科技,工程科技Ⅱ辑
专业: 公路与水路运输,计算机软件及计算机应用,自动化技术
单位: 上海工程技术大学电子电气工程学院
基金: 国家自然科学基金项目(61272097),上海市科技学术委员会项目(13510501400)
分类号: TP391.41;TP18;U495
页码: 177-180+186
总页数: 5
文件大小: 2876K
下载量: 305
相关论文文献
- [1].图像超分辨率重建[J]. 中国新通信 2020(02)
- [2].基于深度学习的单图像超分辨率重建研究综述[J]. 计算机应用研究 2020(02)
- [3].基于稀疏编码的图像超分辨率复原[J]. 计算机与数字工程 2020(03)
- [4].深度图像超分辨率重建技术综述[J]. 西华大学学报(自然科学版) 2020(04)
- [5].视频解码与图像超分辨率重建研究[J]. 电视技术 2020(02)
- [6].功能型复合深度网络的图像超分辨率重建[J]. 计算机科学与探索 2020(08)
- [7].人工智能在广电领域中的应用——以大连新闻传媒集团为例[J]. 演艺科技 2020(07)
- [8].基于球形矩匹配与特征判别的图像超分辨率重建[J]. 计算机应用 2020(08)
- [9].图像超分辨率方法研究进展[J]. 计算机工程与应用 2020(19)
- [10].混合阶通道注意力网络的单图像超分辨率重建[J]. 计算机应用 2020(10)
- [11].基于对抗网络遥感图像超分辨率重建研究[J]. 计算机工程与应用 2020(21)
- [12].基于深度学习的图像超分辨率重建方法综述[J]. 云南民族大学学报(自然科学版) 2019(06)
- [13].基于生成对抗网络的遥感图像超分辨率重建[J]. 光学与光电技术 2019(06)
- [14].基于深度学习的图像超分辨率复原研究进展[J]. 自动化学报 2017(05)
- [15].图像超分辨率重建的研究进展[J]. 计算机工程与应用 2017(16)
- [16].基于深度学习的图像超分辨率重建研究[J]. 电脑知识与技术 2020(29)
- [17].基于分离字典的图像超分辨率重建[J]. 中国科学:信息科学 2020(02)
- [18].基于密集连接的生成对抗网络实现单图像超分辨率方法研究[J]. 电子设计工程 2020(12)
- [19].改进的生成对抗网络的图像超分辨率重建[J]. 计算机工程与设计 2020(07)
- [20].基于改进总广义变分的单幅红外图像超分辨率算法[J]. 轻工学报 2020(04)
- [21].生成对抗网络的单图像超分辨率重建方法[J]. 计算机科学与探索 2020(09)
- [22].基于改进邻域嵌入与导向核回归的图像超分辨率重建[J]. 数字技术与应用 2020(08)
- [23].基于深度卷积神经网络的图像超分辨率重建方法[J]. 传感器与微系统 2020(09)
- [24].基于稀疏贝叶斯估计的单图像超分辨率算法[J]. 计算机应用研究 2019(02)
- [25].基于生成网络的遥感图像超分辨率的研究[J]. 实验室研究与探索 2019(03)
- [26].用于图像超分辨率重构的深度学习方法综述[J]. 小型微型计算机系统 2019(09)
- [27].基于残差密集网络的单幅图像超分辨率重建[J]. 计算机应用与软件 2019(10)
- [28].基于对抗神经网络和语义分割技术的图像超分辨率系统的研发和应用[J]. 有线电视技术 2019(11)
- [29].基于深度特征学习的图像超分辨率重建[J]. 自动化学报 2017(05)
- [30].基于FPGA的图像超分辨率的硬件化实现[J]. 现代电子技术 2017(17)