全文摘要
一种多通道并联的三动力组合发动机,属于组合发动机领域,将引射火箭‑亚燃通道、两个涡轮通道与超燃通道四个通道并联布置,上通道为引射火箭与亚燃燃烧室串联的组合形式,下通道为超燃燃烧室,左右通道均为涡轮发动机,上述四通道共用一个三维内转进气道和尾喷管从而组成四通道三动力组合发动机。本实用新型无需复杂的匹配设计,可最大限度降低各动力之间相互影响并满足推力平衡问题。
主设计要求
1.一种多通道并联的三动力组合发动机,其特征在于:包括三维内转进气道、尾喷管、引射火箭-亚燃通道、超燃通道和两个涡轮通道;三维内转进气道设有第一出口、第二出口、第三出口和第四出口;尾喷管设有第一入口、第二入口、第三入口和第四入口;引射火箭-亚燃通道的入口与第一出口相接,引射火箭-亚燃通道的出口与第一入口相接,引射火箭-亚燃通道内从入口到出口依次安装有火箭发动机和亚燃燃烧室;两个涡轮通道的入口分别与第二出口和第三出口相接,两个涡轮通道的出口分别与第二入口和第三入口相接,涡轮通道中间安装有涡轮发动机;超燃通道的入口与第四出口相接,超燃通道的出口与第四入口相接,超燃通道内设有超燃燃烧室。
设计方案
1.一种多通道并联的三动力组合发动机,其特征在于:包括三维内转进气道、尾喷管、引射火箭-亚燃通道、超燃通道和两个涡轮通道;三维内转进气道设有第一出口、第二出口、第三出口和第四出口;尾喷管设有第一入口、第二入口、第三入口和第四入口;引射火箭-亚燃通道的入口与第一出口相接,引射火箭-亚燃通道的出口与第一入口相接,引射火箭-亚燃通道内从入口到出口依次安装有火箭发动机和亚燃燃烧室;两个涡轮通道的入口分别与第二出口和第三出口相接,两个涡轮通道的出口分别与第二入口和第三入口相接,涡轮通道中间安装有涡轮发动机;超燃通道的入口与第四出口相接,超燃通道的出口与第四入口相接,超燃通道内设有超燃燃烧室。
2.如权利要求1所述一种多通道并联的三动力组合发动机,其特征在于:所述第二出口和第三出口对称设于三维内转进气道的两侧,第一出口和第四出口分别设于三维内转进气道的上部和下部。
3.如权利要求1所述一种多通道并联的三动力组合发动机,其特征在于:所述火箭发动机采用肋板形式固定于引射火箭-亚燃通道靠入口的一端,亚燃燃烧室安装于引射火箭-亚燃通道靠出口的一端,亚燃燃烧室为环形形式。
4.如权利要求1所述一种多通道并联的三动力组合发动机,其特征在于:还包括进气道涡轮通道分流板,所述进气道涡轮通道分流板铰接于三维内转进气道的第二出口和第三出口的上壁面处,以开启或关闭涡轮通道的入口。
5.如权利要求1所述一种多通道并联的三动力组合发动机,其特征在于:还包括引射火箭-亚燃通道喉道调节板,所述引射火箭-亚燃通道喉道调节板铰接于尾喷管的第一入口下壁处,引射火箭-亚燃通道喉道调节板可旋转运动以调节引射火箭-亚燃通道的喉道面积。
6.如权利要求1所述一种多通道并联的三动力组合发动机,其特征在于:还包括涡轮通道喉道调节板,所述涡轮通道喉道调节板铰接于尾喷管的第二入口和第三入口的下壁处,涡轮通道喉道调节板可旋转运动以调节涡轮通道的喉道面积。
7.如权利要求1所述一种多通道并联的三动力组合发动机,其特征在于:还包括喷管下调节板,所述喷管下调节板安装于尾喷管的第四入口下壁处,喷管下调节板可上下运动以调节尾喷管的面积。
设计说明书
技术领域
本实用新型涉及组合发动机领域,尤其涉及一种多通道并联的三动力组合发动机。
背景技术
一个世纪以来,人们在飞的“更高、更快、更远”的理想下,推动了高超声速飞行器的发展。早在20世纪70年代初期就出现了马赫数3的高空侦察机,而到了70年代中期马赫数2的民航客机就开始往返于欧美大陆,近年来,美国、欧盟、俄罗斯、日本等国家及国际组织都在加速推进各种高超声速飞行技术研究项目,旨在追求地面起飞、跨速域(Ma0~6+)、重复使用的高超声速飞行器。
现有航空航天动力主要为涡轮、冲压和火箭发动机,其中涡轮发动机的最佳工作范围Ma0~2.5,Ma3~5是亚燃冲压发动机较为有利的工作范围,超燃冲压发动机的工作范围Ma5~8,火箭发动机虽然可以全速域工作,但效率最低。经过多年的发展和创新,通过组合现有成熟动力装置形成组合动力,能够支撑高超声速飞行的技术方案众多,在美国2030年吸气式推进技术发展规划中,TBCC、RBCC组合循环发动机占用重要席位,并且是进入空间的最有发展前景的动力技术,目前绝大部分公开的Ma5~6级高超声速飞机方案中,涡轮基组合动力(TBCC)是主流的动力方案,TBCC是以涡轮发动机为基础,集成冲压发动机、火箭发动机等动力形式,科学组合形成的宽速域高超声速动力系统。
技术角度而言,实现高超声速飞行的核心在于组合动力技术,比较发现目前国内在组合发动机领域还存在以下主要问题:1、多通道组合动力的推力陷阱,涡轮发动机和冲压发动机工作速域范围目前还存在空档,难以实现推力衔接的问题,而利用引射火箭动力填补转级推力不足是目前比较合理的方案;2、目前国内在双模态燃烧的转换和控制方面基础还较为薄弱,实现双模态工作依然面临较大考验,离工程实践较远;3、目前国内大部分的组合发动机方案都采用双通道形式,因而分配到各通道的工作压力较高,例如冲压发动机要在满足燃烧室入口速度要求的前提下同时保持自起动能力、涡轮在低速状态存在推力不足情况。
发明内容
本实用新型的目的在于解决现有技术中的上述问题,提供一种多通道并联的三动力组合发动机,可在设计技术难度及结构复杂度不高的条件下实现跨速域的工作,满足有效跨越推力鸿沟的同时提供较高的低速爬升和高速巡航性能。
本实用新型将引射火箭-亚燃通道、两个涡轮通道与超燃通道四个通道并联布置,上通道为引射火箭与亚燃燃烧室串联的组合形式(以下简称“引射火箭-亚燃通道”),下通道为超燃燃烧室(以下简称“超燃通道”),左右通道均为涡轮发动机(以下简称“涡轮通道”),上述四通道共用一个三维内转进气道和尾喷管从而组成四通道三动力组合发动机。本实用新型无需复杂的匹配设计,可最大限度降低各动力之间相互影响并满足推力平衡问题。
为达到上述目的,本实用新型采用如下技术方案:
一种多通道并联的三动力组合发动机,包括三维内转进气道、尾喷管、引射火箭-亚燃通道、超燃通道和两个涡轮通道;
三维内转进气道设有第一出口、第二出口、第三出口和第四出口;尾喷管设有第一入口、第二入口、第三入口和第四入口;引射火箭-亚燃通道的入口与第一出口相接,引射火箭-亚燃通道的出口与第一入口相接,引射火箭-亚燃通道内从入口到出口依次安装有火箭发动机和亚燃燃烧室;两个涡轮通道的入口分别与第二出口和第三出口相接,两个涡轮通道的出口分别与第二入口和第三入口相接,涡轮通道中间安装有涡轮发动机;超燃通道的入口与第四出口相接,超燃通道的出口与第四入口相接,超燃通道内设有超燃燃烧室;三维内转进气道的第一出口上壁面处铰接有引射火箭-亚燃通道分流板,以开启或关闭引射火箭-亚燃通道的入口。
三维内转进气道的第二出口和第三出口的上壁面处铰接有涡轮通道分流板,以开启或关闭涡轮通道的入口。
所述第二出口和第三出口对称设于三维内转进气道的两侧,第一出口和第四出口分别设于三维内转进气道的上部和下部。
所述火箭发动机采用肋板形式固定于引射火箭-亚燃通道靠入口的一端,亚燃燃烧室安装于引射火箭-亚燃通道靠出口的一端,亚燃燃烧室为环形形式。
本实用新型还包括引射火箭-亚燃通道喉道调节板,所述引射火箭-亚燃通道喉道调节板铰接于尾喷管的第一入口下壁处,引射火箭-亚燃通道喉道调节板可旋转运动以调节引射火箭-亚燃通道的喉道面积。
本实用新型还包括涡轮通道喉道调节板,所述涡轮通道喉道调节板铰接于尾喷管的第二入口和第三入口的下壁处,涡轮通道喉道调节板可旋转运动以调节涡轮通道的喉道面积。
本实用新型还包括喷管下调节板,所述喷管下调节板安装于尾喷管的第四入口下壁处,喷管下调节板可上下运动以调节尾喷管的面积。
上述一种多通道并联的三动力组合发动机的设计方法,包括以下步骤:
1)根据飞行任务制定总体性能要求,基于总体性能要求设计基本流场,确定进气道捕获面积,进而在基本流场中通过流线追踪得到三维内转进气道;
2)基于步骤1)三维内转进气道的出口面积,根据发动机总体性能计算超燃燃烧室进出口参数,进而设计超燃通道和超燃燃烧室;
3)基于步骤2)超燃燃烧室出口参数,根据发动机总体性能设计尾喷管上型面及下调节板;
4)根据Ma0~2阶段发动机流量需求,利用流量公式设计图
相关信息详情
申请码:申请号:CN201920018391.8
申请日:2019-01-07
公开号:公开日:国家:CN
国家/省市:92(厦门)
授权编号:CN209340055U
授权时间:20190903
主分类号:F02K 7/12
专利分类号:F02K7/12;F02K7/18
范畴分类:28B;
申请人:厦门大学
第一申请人:厦门大学
申请人地址:361005 福建省厦门市思明南路422号
发明人:邢菲;郭峰;朱剑锋;尤延铖
第一发明人:邢菲
当前权利人:厦门大学
代理人:张素斌
代理机构:35200
代理机构编号:厦门南强之路专利事务所(普通合伙)
优先权:关键词:当前状态:审核中
类型名称:外观设计