面向PCP-MS数据的PPI网络推断算法

面向PCP-MS数据的PPI网络推断算法

论文摘要

随着蛋白质组学的发展,研究者们开始聚焦于人类的全部蛋白质相互作用(Protein-Protein Interaction,PPI)网络的建立,质谱分析技术已成为预测蛋白质相互作用的代表方法。质谱技术是构建蛋白质相互作用网络的主要实验手段之一,基于质谱技术产生了大量的蛋白质纯化数据,如AP-MS数据和PCP-MS数据等。这些数据为PPI网络的构建提供了重要的数据支持,但是通过人工的手段来构建PPI网络不仅低效,而且很不现实。因此,面向PCP-MS数据的网络推断算法是生物信息学研究的一个热点问题。文中针对一类主流的质谱(PCP-MS)数据的PPI网络构建算法问题开展研究,从解决目前存在的瓶颈问题出发,达到构建高质量PPI网络的目的。现有的面向PCP-MS数据的PPI网络推断算法的研究还处于初级阶段,相关方法较少。同时,算法结果的质量还存在着一些问题:1)很多错误的相互作用被包含在不同的推断算法结果中,同时一些正确的相互作用在结果中被遗漏;2)不同的推断算法在同一数据集上的表现差异较大;3)对于不同的数据集,同一算法表现性能的波动方差较大。因此,为了从PCP-MS数据中推断出结构可靠、质量较高的PPI网络,文中提出一种基于相关性分析与排序整合的PPI评分方法。该方法基于无监督学习,包括以下两个步骤:1)计算蛋白质之间的相关系数,得到多组相关性结果;2)采用排序整合的方法对多组结果进行整合,得到整合后的PPI分数。实验结果表明,所提方法在不使用参考标准的情况下,可以达到与有监督学习方法接近的结果。

论文目录

  • 1 引言
  •   1.1 PPI网络构建问题
  •   1.2 相关工作
  •   1.3 研究动机与本文主要贡献
  • 2 面向PCP-MS数据的PPI网络构建算法
  •   2.1 方法描述
  •     (1)相关性分析。
  •     (2)排序整合。
  •   2.2 相关性分析
  •     (1)Pearson相关系数
  •     (2)Noised-Pearson相关系数
  •     (3)Wcc系数
  •   2.3 排序整合
  •     (1)数据预处理。
  •     (2)排序整合。
  •     (3) 错误发现率控制。
  • 3 实验结果
  •   3.1 数据集和参考集
  •   3.2 数据集和参考集
  •     (1)基于有监督学习方法
  •     (2)基于无监督学习方法
  •     (3)无监督学习方法与有监督学习方法的比较
  • 文章来源

    类型: 期刊论文

    作者: 陈征,田博,何增有

    关键词: 数据,网络,蛋白质直接相互作用,相关性分析,排序整合

    来源: 计算机科学 2019年12期

    年度: 2019

    分类: 信息科技,基础科学,医药卫生科技

    专业: 生物学,生物医学工程,计算机软件及计算机应用

    单位: 大连理工大学软件学院

    基金: 国家自然科学基金项目(61572094)资助

    分类号: Q811.4;TP301.6

    页码: 313-321

    总页数: 9

    文件大小: 2496K

    下载量: 55

    相关论文文献

    • [1].皂苷-蛋白质相互作用的研究进展[J]. 中国食品学报 2020(04)
    • [2].蛋白质相互作用数据库[J]. 中国生物化学与分子生物学报 2017(08)
    • [3].基于多特征融合预测蛋白质相互作用界面[J]. 中南民族大学学报(自然科学版) 2017(03)
    • [4].基于蛋白质相互作用网络分析右归丸治疗肾阳虚证的疗效机制[J]. 中国中医药信息杂志 2016(02)
    • [5].基于蛋白质相互作用“热点”区域的小分子药物设计研究进展[J]. 生物物理学报 2015(02)
    • [6].蛋白质相互作用的研究方法及进展分析[J]. 文理导航(中旬) 2018(01)
    • [7].大规模蛋白质相互作用组实验技术及其应用[J]. 生命的化学 2013(05)
    • [8].茶多酚-蛋白质相互作用的研究进展[J]. 食品工业科技 2019(08)
    • [9].蛋白质相互作用时序网络模型及动态性质分析[J]. 湖南理工学院学报(自然科学版) 2018(01)
    • [10].水稻组织特异性蛋白质相互作用网络构建方法[J]. 哈尔滨工业大学学报 2018(11)
    • [11].基于空间映射的蛋白质相互作用网络链接预测算法[J]. 计算机科学 2016(S1)
    • [12].动态加权蛋白质相互作用网络构建及其应用研究[J]. 自动化学报 2015(11)
    • [13].双分子荧光互补在蛋白质相互作用中的应用[J]. 湖北医药学院学报 2014(02)
    • [14].蛋白质相互作用网络演化模型研究进展[J]. 计算机应用 2013(03)
    • [15].通过液质联用鉴定蛋白质相互作用方法的建立[J]. 首都医科大学学报 2013(03)
    • [16].基于组合特征集成的蛋白质相互作用位点预测[J]. 济南大学学报(自然科学版) 2012(01)
    • [17].蛋白质相互作用网络分析的图聚类方法研究进展[J]. 计算机工程与科学 2012(01)
    • [18].荧光共振能量转移动态检测蛋白质相互作用的研究进展[J]. 济宁医学院学报 2012(01)
    • [19].糖-蛋白质相互作用在酶固定及蛋白质识别与分离中的应用[J]. 中国生物工程杂志 2012(04)
    • [20].蛋白质相互作用网络研究的引文分析[J]. 中华医学图书情报杂志 2012(04)
    • [21].蛋白质相互作用预测方法研究进展[J]. 计算机光盘软件与应用 2012(18)
    • [22].蛋白质相互作用研究进展[J]. 生物学通报 2012(11)
    • [23].基于图聚类的蛋白质相互作用网络功能模块探测[J]. 食品与生物技术学报 2011(01)
    • [24].随机抽样对蛋白质相互作用网络度分布的影响[J]. 生物信息学 2011(03)
    • [25].蛋白质相互作用网络的相似子网搜索问题研究[J]. 计算机工程与应用 2010(03)
    • [26].一类蛋白质相互作用网络比对的线性规划算法[J]. 生物物理学报 2010(01)
    • [27].基于多窗口不同特征的蛋白质相互作用位点预测[J]. 安徽大学学报(自然科学版) 2010(05)
    • [28].数据来源对蛋白质相互作用网络度分布的影响[J]. 生物数学学报 2010(04)
    • [29].蛋白质相互作用网络进化分析研究进展[J]. 生物化学与生物物理进展 2009(01)
    • [30].蛋白质相互作用网络的几种聚类方法综述[J]. 国防科技大学学报 2009(04)

    标签:;  ;  ;  ;  ;  

    面向PCP-MS数据的PPI网络推断算法
    下载Doc文档

    猜你喜欢