一、淮南矿区煤巷稳定性分类及工程对策(论文文献综述)
沈书豪[1](2020)在《淮南潘集矿区深部煤系岩石力学性质及其控制因素研究》文中研究表明随着资源勘查与煤矿开采深度逐年增大,开采方式逐步向智能化推进,对煤矿深部开采地质条件的探查以及对致灾因素预测精细程度的要求越来越高。查清并研究深部煤炭资源赋存地质条件以及深部煤系岩石物理力学性质,不仅是一个地质基础性科学问题,也是我国煤炭工业可持续发展的现实课题,成果可为深部矿井的设计、建设和安全生产提供更加准确、完整的地质基础数据,以便提前采取有效手段和防治措施,减少或避免矿井地质灾害的发生。本文以淮南潘集矿区深部勘查区为研究对象,紧密结合该研究区的地质普查和详查工程,充分利用周边生产矿井等有利条件,通过钻孔资料处理、原位测试、野外采样、室内试验和理论分析等手段,确定了潘集矿区深部煤系岩石赋存的地应力及地温条件,分析了煤系岩石微观成分、沉积环境和结构构造特征,试验获得了常规及地温、地应力等条件下的岩石力学性质,研究了岩石宏观力学性质差异性及其主要控制因素,揭示了深部煤系岩石力学行为的地质本质性控制机理。取得的主要成果有:1)采用岩矿显微薄片鉴定、图像分析和X-射线衍射等方法对深部煤系岩石矿物成分、含量和微观结构等进行了统计与分析,获得了研究区不同岩性岩石的微观特征:砂岩主要矿物为石英,平均含量在65%以上,结构以孔隙式胶结为主,且不同层位砂岩碎屑颗粒含量和粒度分布特征区别较大;泥岩矿物成分中黏土矿物含量较高,占比60%左右,陆源碎屑矿物占比30%左右,且各层位含量差异不大,自身非黏土矿物如菱铁矿等含量在不同层位泥岩中差异较大。2)基于研究区勘探钻孔岩芯及测井资料的统计分析,得出了深部主采煤层顶底板岩性类型组成及岩体结构性特征:平面上,深部5个主采煤层顶底板岩性类型均以泥岩型为主,研究区从东到西煤层顶底板砂岩厚度逐渐增加,泥岩厚度逐渐减小;垂向上,砂岩含量最高层位为下二叠统,向上逐渐变小,泥岩含量则相反;岩石质量指标(RQD)和钻孔声波测井可以直接反映深部岩体的结构性特征,主采煤层顶底板RQD值和钻孔测井波速平面分布较为一致,在靠近研究区中部潘集背斜转折端和断层附近,顶底板RQD值和测井波速都较小,岩石质量和岩体完整性都较差,远离大型构造与褶皱区域RQD值和测井波速均有增大趋势,受岩性分布和构造作用影响。3)选用地面千米钻孔水压致裂法和井下巷道应力解除法开展了研究区地应力原位测试工作,结合AE法试验解译结果,得出了深部研究区现今地应力场类型、大小及方向:-1000~-1500m深度范围内最大水平主应力在30~55MPa之间,且随深度增加呈线性增大趋势;最大水平主应力约为垂直主应力的1.3倍,揭示出深部地应力场以水平构造应力为主,最大、最小主应力比值在1.116~2.469之间,平均为1.511,且随深度增加逐渐减小;研究区最大主应力方向为NEE向,随着深度的增加趋向于近EW向;深部现今地应力场受区域大地构造控制,研究区内不同位置地应力大小和方向存在一定差异,受区域性F66断层和潘集背斜共同影响。4)基于潘集矿区深部近似稳态钻孔测温数据建立了测温孔温度变化的校正公式,结合井下巷道测温成果对研究区简易测温孔数据进行了校正,得出淮南潘集矿区深部地温梯度值变化范围为1.52℃/百米~3.41℃/百米,平均梯度2.46℃/百米;主采煤层底板温度随深度增加呈线性增大关系,计算分析了研究区-1000m、-1200m及-1500m三个水平的地温分布规律,并编制了对应的地温分布等值线图。5)常规条件下研究区煤系岩石力学试验结果表明:不同岩性岩石力学性质参数差异性较大,相同层位相同岩性的岩石力学参数分布也较为离散,煤系岩石力学性质的岩性效应明显;研究区各岩性岩石抗压强度与抗拉强度、弹性模量和凝聚力等参数间呈良好的线性关系,垂向上,上石盒子组中11-2煤顶底板砂岩抗压强度最高,下石盒子组中3煤顶板粉砂岩强度最高,各主采煤层顶底板的泥岩平均强度随层位变化不明显。6)开展了符合深部地应力变化范围内的不同围压条件下煤系岩石三轴力学试验,得出了深部煤系岩石强度随围压增加而增大,在试验围压范围内,初期增幅较大,增幅随围压增大而减小;通过对煤系三轴岩石力学试验参数的回归分析,建立了淮南矿区深部不同岩性的煤系岩石力学强度及峰值应变随围压变化的预测模型,并基于大量试验结果分析确定了研究区煤系岩石的岩性影响系数。7)在深部煤系地温变化范围内开展不同温度条件下煤系岩石恒温单轴压缩试验,结果表明温度对煤系岩石强度和变形性质的影响要弱于岩性和围压的影响,岩石单轴抗压强度等力学参数整体随温度的升高呈降低趋势;不同层位和不同岩性岩石受温度影响有差异,根据强度随温度的变化特征将煤系岩石力学性质随温度的变化类型分为Ⅰ型-强度随温度增加而降低型,Ⅱ型-强度波动不变型和Ⅲ型-强度随温度增大型三类。8)分析了研究区主采煤层顶底板岩石物质组成、微观结构、岩石质量指标(RQD)、钻孔测井波速以及深部赋存的应力和温度环境等因素对岩石力学性质的影响作用,阐明了影响深部煤系岩石力学性质的沉积特性、岩体结构特性和围压等主控因素,揭示了深部煤系岩石力学行为的物质性、结构性及赋存性的地质本质性控制作用机理。图[140]表[43]参考文献[245]
任中发[2](2020)在《潘二煤矿18224工作面回采巷道围岩稳定性分析与支护技术研究》文中进行了进一步梳理随着煤炭资源的开采,浅部煤矿资源逐步耗尽,深部煤巷锚杆支护变得越来越困难。锚杆支护是利用锚杆加固巷道围岩使其能够有较大的承载能力,锚杆与围岩共同作用维持巷道的稳定,是一种主动防御的支护方式,是保障矿井安全生产的重大变革。本文针对潘二煤矿18224工作面回采巷道支护困难、围岩变形量大等问题,运用现场调研、巷道围岩地质力学参数测试、模糊聚类综合分析的手段对回采巷道进行围岩稳定性分类,并通过理论分析计算、数值模拟对支护参数进行初步分析以及现场实测相结合的方法对支护效果合理评价。本文主要做了以下研究:(1)通过对18224工作面回采巷道围岩物理力学测试与分析、地应力测量与分析、井下锚杆拉拔试验等地质力学参数测试,得到巷道围岩基本参数。(2)通过研究影响巷道稳定性因素进行分类指标选取,采用MATLAB逻辑控制工具对收集到的样本巷道使用模糊聚类的分析方法得到分类指标聚类中心值,最后对18224工作面回采巷道进行围岩分类,4煤巷道围岩稳定性类别属于第Ⅳ类。(3)通过巷道破坏及锚杆支护机理研究,结合《我国缓倾斜、倾斜煤层回采巷道围岩稳定性分类方案》和现场实际情况,最终确定18224工作面回采巷道顶板布置“锚杆+锚索+金属铁丝网+钢带”支护;两帮布置“锚杆+金属网+钢带”;底角布置“倾斜锚杆”支护,采用理论分析计算得到巷道初始支护参数。(4)基于控制变量法的思想,通过逐个改变单一支护参量的数值模拟方法,研究了不同直径锚杆、不同长度锚杆、不同间排距锚杆对巷道围岩变形和矿压显现特征的影响,并结合现场实际地质条件,最后总结分析得到最优支护方案。(5)通过对最优支护方案进行数值模拟分析,得到回采巷道围岩矿压显现特征(塑性区分布、位移变化、应力分布);并结合现场实测目标巷道掘进和回采期间巷道表面位移和深部位移、离层情况以及锚杆受力情况,分析总结该工作面煤巷得到了有效支护。最后,该煤巷锚杆支护设计方案在理论、数值模拟试验和现场实际应用中都取得了相互应证。图[55]表[21]参[93]
谢正正[3](2020)在《深部巷道煤岩复合顶板厚层跨界锚固承载机制研究》文中提出随着国家煤炭开采重心向资源禀赋好、开采条件好的西部地区转移,这一地区深部开采已成必然趋势。基于工程因素的考虑,煤巷高度一般小于工作面采高,造成煤岩复合顶板巷道在我国西部,尤其是鄂尔多斯地区越来越常见。由于深部煤层强度低、节理发育,造成煤层碎胀变形严重,顶煤易与直接顶产生离层变形,且煤帮易发生大范围劈裂破坏,给巷道维控带来极大困难。与此同时,西部地区采煤装备的迅速发展全面推进了综采技术的进度,而对应的综掘技术发展相对滞后,采掘接续高度紧张,再次加重了煤巷的控制难度。所以煤岩复合顶板巷道控制难度大、掘进效率低的问题一直困扰着西部地区矿井的安全高效生产,研究深部巷道煤岩复合顶板变形破坏机理及高效控制技术,对破解围岩控制和掘进效率相制约的难题具有重大意义。本文主要以西部地区葫芦素煤矿煤岩复合顶板巷道为工程背景,针对巷道安全性差和支护效率低的科学问题,采用现场实测、实验室实验、数值计算、理论分析、相似模拟、材料研发和现场试验相结合的研究方法,多角度分析了煤岩复合顶板分层渐进垮冒规律,揭示了煤岩复合顶板厚层跨界锚固机理,阐明了复合顶板厚层锚固系统承载和破坏机制,创新了煤岩复合顶板跨界长锚固柔化结构,取得如下主要研究成果:(1)揭示了煤岩复合顶板巷道变形破坏特征。通过现场测试分析,最大水平主应力高达22.33 MPa,煤层和直接顶孔裂隙发育,尤其是煤层分布着大量横纵交错的微裂隙,造成煤体和直接顶抗压强度仅为10.8 MPa和32.1 MPa,是煤岩复合顶板离层破坏的内在原因;巷道跨度为5.4 m、锚杆初锚力仅为26 k N,锚杆锚固深度为2.1 m,无法遏制巷道围岩的初始变形和后期持续变形,是煤岩复合顶板巷道变形失稳的外在原因。(2)阐明了煤岩组合试样力学特性差异及能量耗散过程。由实验室实验分析,随着煤样高度增加,组合试样应变增高区范围越大,发生局部应变突变的可能越大,使得试样的力学性能参数越小。能量耗散过程证明了能量演化以弹性应变能为主,占总能量的81%~98.3%,当超过峰值强度这一关键节点后,煤样弹性应变能迅速释放,促使岩样在交界面萌生裂隙,并进一步引起裂隙的扩展与贯通,造成组合试样的拉剪破坏。解析了巷道开挖释放的弹性变形能是浅部顶煤变形与裂隙发育的主要因素,及时强力支护可使微裂隙重新闭实,遏制消耗能的增加,恢复巷道围岩相对的能量平衡。(3)发现了应力释放过程中煤岩复合顶板巷道渐进破坏规律。由离散元模拟分析,随着应力逐渐释放,煤岩复合顶板变形呈阶段性渐进增长,顶煤最先离层断裂,后引起直接顶分层破坏,顶板最终呈“三角”型整体垮冒,揭示了顶煤是诱发围岩发生整体性变形和渐进失稳的主要因素,指出了抑制顶煤裂隙扩展与贯通是控制煤岩复合顶板渐进破坏的关键;同时阐明了围岩变形量和顶板裂隙数量与煤层厚度具有较强的正相关,顶煤厚度变厚加大了巷道的控制难度。(4)解析了煤岩复合顶板厚层跨界锚固原理。根据模拟计算分析,锚杆长度的增加根本上改变了顶板变形方式,由大范围“三角”型断裂式下沉变为小范围“圆弧”型均匀式下沉;同时缩小了裂隙扩展范围,由广泛分布在锚杆锚固区内外,再到最深分布在锚杆端头区域,最后仅存在于锚杆锚固区浅部;揭示了锚杆端头损伤区随着锚杆长度增加发生上移并渐进弱化的厚层跨界锚固原理。(5)研发了顶板厚层锚固系统并提出了跨界长锚固技术。根据理论分析,利用长锚杆在顶板构建水平、垂直方向上均能实现应力连续传递的厚层稳态岩梁,这是厚层锚固系统的内涵,具有抗弯刚度大、裂隙化程度低和锚杆支护效率高的特点;验证了厚层跨界锚固下强力护表可有效抑制张拉裂隙的数量,由占比34.9%降低至20.5%,顶板应力实现连续化传递,同时缓解作用到煤帮的压力,双向优化顶帮控制,有利于巷道长期稳定。(6)确定了煤岩复合顶板厚层锚固承载作用机制。由相似模拟分析,高预应力柔性长锚杆构建了高强度和高刚度的顶板厚层锚固结构,充分调动顶板更深处围岩参与承载,降低了顶板应力释放幅度,提高了巷道抗变形能力;锚杆初始预紧力越高,锚杆反应越灵敏,对围岩的支护作用越及时,进而抑制裂隙的扩展。经冲击动载实验表明,顶板薄层锚固结构被强动载瞬间冲垮,呈整体“刀切”型破坏,而厚层锚固结构具有较强的抗冲击特性,其巷帮先被冲垮带动顶板发生“扇形”整体性下沉,围岩完整性得到有效保持,确保了煤巷的安全。(7)研制了不受巷高限制且实现旋转式快速安装的柔性锚杆。经多工况实验分析,确定了影响柔性锚杆力学性能的锁紧套管参数,锚杆峰值力超过330 k N,延伸率达到5%,具有良好的承载能力和延展性能;揭示了柔性锚杆在长期载荷和循环载荷作用下的力学特征和破坏机制,验证了柔性锚杆在不同淋水环境、不同安装角度等特殊井下环境的可靠性,并在三种复杂条件巷道中进行了推广应用。(8)在葫芦素和门克庆煤矿两个典型煤岩复合顶板巷道中开展厚层锚固系统的工程验证,巷道掘进速度提高了60%,尤其是门克庆煤矿,创下了深井大断面煤岩复合顶板巷道单巷单排单循环月进1040 m的掘进纪录;同时,显着提升了巷道控制效果,将顶板裂隙降至0.8 m以内,煤帮变形也得到根本改善,为类似条件巷道的推广应用提供了有力参考。该论文有图159幅,表28个,参考文献175篇。
姜鹏飞[4](2020)在《千米深井巷道围岩支护—改性—卸压协同控制原理及技术》文中研究表明我国埋深1000m以下的煤炭资源丰富,主要分布在中东部地区。与浅部煤矿相比,千米深井最大的特点是地应力高、采动影响强烈,巷道开挖后即表现为变形大、持续时间长、稳定性差,受到工作面采动影响后,围岩变形与破坏进一步加剧,甚至出现冒顶、冲击地压等灾害。适用于中浅部煤矿的围岩控制方法与技术不能解决千米深井难题。为此,本文以我国淮南矿区中煤新集口孜东矿千米深井121302工作面运输巷为工程背景,采用理论分析、实验室试验、相似材料模型试验、数值模拟及井下试验相结合的方法,研究千米深井巷道围岩大变形机理及支护-改性-卸压协同控制原理及技术,为千米深井巷道围岩控制提供基础。本文研究内容包括五个方面:(1)从地应力、围岩裂化、超长工作面采动、偏应力诱导围岩扩容等多个角度研究千米深井巷道围岩大变形机理。(2)采用相似材料模型试验对比研究单一锚杆锚索支护与支护-改性-卸压协同控制2种方案下巷道围岩及支护体受力、巷道裂隙分布与变形规律。(3)采用数值模拟研究单一锚杆锚索支护、支护-改性-卸压等多种方案下巷道围岩变形破坏机理,揭示千米深井巷道支护-改性-卸压协同控制原理。(4)研发千米深井巷道支护-改性-卸压协同控制技术。(5)提出口孜东矿千米深井巷道支护-改性-卸压协同控制方案,并进行井下试验与矿压监测,对研究成果进行验证。通过论文研究,取得以下结论:(1)井下实测得出口孜东矿试验巷道所测区域最大水平主应力21.84MPa,垂直应力25.12MPa,地应力场以垂直应力为主。实验室测试得出13-1煤层顶底板以泥岩为主,强度低、胶结性差,煤岩层中粘土矿物含量占除煤质以外矿物总含量的60%,极易风化和遇水软化。井下测量发现巷道变形主要为帮部大变形和强烈底鼓,大量肩窝锚杆、锚索破断,托板翻转、钢带撕裂,导致支护破坏与失效。(2)数值模拟揭示了不同地应力、围岩强度劣化、工作面长度及偏应力等地质力学与生产条件参数对千米深井巷道围岩变形影响机制,揭示了千米深井巷道围岩大变形机理和3个主要影响因素:高应力、软岩与流变、超长工作面强采动作用,提出了千米深井软岩巷道的支护-改性-卸压协同控制方法和“三主动”原则:采用高预应力锚杆与锚索实现主动支护;采用高压劈裂注浆主动对软弱破碎煤层改性;采用超前水力压裂实施主动卸压。(3)相似材料模型试验结果表明,直接顶初次垮落步距30m,基本顶初次来压步距55m,周期来压滞后工作面后方5m。受高应力与顶板泥岩的影响,工作面随采随冒。对比分析了非压裂与压裂两种情况下上覆岩层垮落与断裂形态,未进行水力压裂卸压时,受工作面开采影响,煤柱上方顶板产生1条断裂线;采用水力压裂卸压后,煤柱上方顶板产生了2条断裂线,且在压裂范围产生了1条明显的裂隙和多条微小裂隙,减小了上覆坚硬岩层的悬顶范围,激活了原生裂隙,降低了煤柱采动应力,从而减弱了强烈采动影响。(4)相似材料模型试验研究获得了单独采用锚杆锚索支护与采用支护-改性-卸压协同控制2种方案下围岩与支护体受力、巷道变形与破坏特征。采用支护-改性-卸压协同控制方案巷道围岩承载能力较单独采用锚杆锚索支护时增强,锚杆锚索受力增大,巷道围岩完整性、强度、锚固力提升,采动应力降低,巷道围岩裂隙长度、宽度和分布范围减小,支护-改性-卸压三者存在协同互补的关系。采用支护-改性-卸压协同控制方案后,巷道断面收缩率30.8%;较单独采用锚杆锚索支护方案断面收缩率降低61.5%。(5)采用数值模拟研究了支护-改性-卸压协同控制巷道围岩受力、变形与裂隙分布特征,并与无支护、锚杆锚索支护进行了对比分析。巷道围岩采用支护-改性-卸压控制后,巷道周围煤岩体垂直应力均明显高于无支护及锚杆锚索支护巷道,而煤柱侧中部至采空区区域及实体煤侧深部区域其垂直应力较无支护及锚杆锚索支护巷道降低,巷道变形、产生的剪切和张拉裂隙显着减少。(6)提出了支护-改性-卸压协同控制原理:通过高预应力锚杆、锚索及时主动支护,减小围岩浅部偏应力和应力梯度,抑制锚固区内围岩不连续、不协调的扩容变形;通过高压劈裂主动注浆改性,提高巷帮煤体的强度、完整性及煤层中锚杆、锚索锚固力;工作面回采前选择合理层位进行水力压裂主动卸压,减小侧方悬顶和采空区后方悬顶,并产生新裂隙,激活原生裂隙,降低工作面回采时采动应力量值和范围;三者协同作用,控制千米深井巷道围岩大变形。(7)研发出巷道支护-改性-卸压协同控制技术:开发了CRMG700型超高强度、高冲击韧性锚杆支护材料,揭示出锚杆的蠕变特性及在拉、剪、扭、弯、冲击复合载荷作用下力学响应规律。研究了微纳米无机有机复合改性注浆材料性能,该材料注浆改性后较未注浆的裂隙原煤抗剪强度提高81.5%,能够起到提高煤体结构面强度、完整性和锚杆锚索锚固性能的作用。提出了水力压裂分段压裂工艺技术及效果评价方法。(8)提出支护-改性-卸压巷道围岩控制布置方案与参数,并进行了井下试验和矿压监测。结果表明,与原支护相比,支护-改性-卸压协同控制方案应用后,充分发挥了锚杆、锚索主动支护作用,锚杆、锚索破断率降低90%;高压劈裂注浆提高了巷帮煤体的强度和完整性;顶板上覆坚硬岩层实施水力压裂,减小了工作面超前采动应力量值与变化幅度,降低了液压支架工作阻力。支护-改性-卸压协同控制方案井下应用后使巷道围岩变形量降低了50%以上。
陶文斌[5](2020)在《高应力软岩巷道锚杆支护优化及工程应用研究》文中研究说明安徽省和山东省作为我国重要煤炭能源基地,随着煤矿开采深度不断增大,深井软岩巷道面临高应力环境,巷道存在变形严重、支护困难等问题,造成巷道返修频繁和锚杆失锚安全事故显着增加,严重影响巷道正常施工和威胁人员安全。本文基于安徽省和山东省矿区地应力测试分析结果,明确了安徽和山东矿区地应力场分布规律,以安徽淮南矿区潘三煤矿为例,对潘三煤矿地应力进行实测,并模拟分析在巷道轴向与最大水平主应力方向成不同夹角时巷道围岩应力与锚杆轴力变化规律,发现巷道变形不仅与地应力大小相关,而且还与巷道轴向和最大主应力方向有关,对高应力软岩巷道锚杆支护提出了更高的要求。通过正交试验分析锚杆加固岩体影响因素作用,对锚杆支护工艺进行改进,提出了锚杆锚固优化方案,并将其应用于高应力软岩巷道支护实践中,取得了较好的效果。研究成果可为安徽省和山东省矿区软岩巷道锚杆支护提供借鉴。主要研究成果如下:(1)通过对安徽、山东矿区地应力测试结果分析,发现安徽和山东矿区是以水平应力为主的高地应力矿区。以淮南矿区潘三煤矿为例,采用应力解除法对潘三煤矿地应力进行了现场实测,得到潘三煤矿地应力大小及分布规律,潘三煤矿为典型高地应力矿井,以南北向水平应力为最大主应力,且水平应力与垂直应力差值和最大与最小水平应力差值均较大。现场发现当巷道布置轴向与最大水平主应力方向近似垂直时,巷道变形量急剧增加。(2)对最大水平主应力方向与巷道布置轴向成不同夹角的巷道锚杆锚固支护进行数值模拟研究。当巷道布置轴向与最大水平主应力方向的夹角在0°~30°时,巷道围岩应力较为缓和;当夹角大于30°时,巷道顶部和底板区域应力显着升高并且应力集中程度增大;锚杆自由段轴力呈“一”字状分布,锚杆锚固段轴力呈“乀”字状分布,帮部锚杆轴力随最大水平主应力与巷道轴向所成夹角增大而呈负相关,顶部锚杆轴力随夹角增加呈正相关且增加显着。当夹角大于30°时巷道顶板逐渐转为重点支护区域,应加强锚杆对顶板支护。(3)对于局部变形严重的高应力软岩巷道,采用加长锚固锚杆或全长锚固锚杆支护存在锚杆承载能力低和锚固段受力不均的现象,无法依靠锚杆支护解决巷道大变形的问题。通过设计锚杆拉拔试验正交方案开展锚杆加固岩体影响因素研究,试验结果表明:锚杆失效首先发生在锚固体与试块粘结界面,锚杆拉拔锚固失效经历了弹性-塑性-破坏6个动态阶段,不同锚杆加固岩体影响因素对锚固失效和锚杆极限拉拔力作用不同,其中试块强度和锚杆预应力对提升锚杆极限拉拔力影响显着。(4)基于对锚杆加固岩体影响因素分析,提出了高预应力后张法全长锚固支护工艺,并研发高预应力减摩垫片和高预应力全长锚固锚杆。对高预应力后张法全长锚固支护的受力特征进行了分析和对支护围岩承载能力进行了理论计算,并采用测力锚杆对高预应力后张法全长锚固支护与传统加长锚固支护、全长锚固支护进行了室内和现场试验对比。高预应力后张法全长锚固支护方法具有高预应力支护与全长锚固支护的特点,在全长锚固的基础上使得预应力得以向围岩内传递,增大围岩压应力区范围,形成更有效的锚固围岩承载结构,在现场试验中有效控制了围岩变形;同时高预应力后张法全长锚固支护方法使锚固界面剪应力分布更加平缓,减少应力集中出现,有效避免了脱锚失锚事故发生。(5)对非均匀应力环境中的深埋圆形巷道围岩-锚杆受力力学机制进行了分析,并考虑围岩软化、扩容和锚杆锚固效应影响,推导了不同水平应力下围岩弹塑性区应力、位移表达式以及锚杆轴力和锚固界面剪应力的解析表达式,进而对围岩侧压系数、锚杆预应力、围岩弹性模量和锚杆长度四个影响因素进行分析。侧压系数是影响巷道锚固破碎区形态的主要因素,不同锚固破碎区形态造成巷道不同位置锚杆受力分布不同;通过锚杆支护抑制巷道锚固破碎区变形是控制巷道变形重点,提高锚杆预应力和改善围岩强度可以显着提高锚杆支护质量,只改变锚杆长度对改善支护效果影响很小。(6)根据高地应力软岩巷道地质环境以及现有围岩分类标准,提出了以地应力测量结合围岩分级指标为基础,测力锚杆全程监测为依据,高预应力全长锚固技术为核心并采用数值模拟修正的动态支护优化方案,对巷道重点支护区域进行局部支护强化设计。结果表明:该支护优化方案改善了围岩特性,通过增加围岩有效压应力来减小巷道变形量,提高了围岩抗变形能力,支护效果比较显着。
赵明洲[6](2020)在《赵庄矿综掘煤巷复合顶板稳定机制与安全控制技术》文中指出随着煤炭的高强度和大规模开采,煤巷的年消耗量逐渐增加,掘进速度远落后于回采速度的现状致使矿井采掘关系空前紧张。支护作为煤巷掘进的主要工序之一,其参数的合理选择是保证复合顶板煤巷掘进施工安全和提高掘进速度的重要前提。在煤巷综掘施工过程中,滞后支护距离过大易发生空顶区顶板冒顶,距离过小将增加掘进循环次数,进而降低掘进速度。此外,永久支护强度不足易引发事故,而提高支护强度往往会增加支护用时,降低开机率,进而限制掘进速度的提升。因此,如何设计出合理的支护参数及其施工工序,在保证施工安全的前提下,最大限度地提高煤巷掘进速度,已成为煤矿生产过程中亟待解决的难题。本文以赵庄矿53122回风巷为工程背景,综合采用现场调研、数值模拟、实验室试验、理论分析和现场工程试验等方法,分别对复合顶板煤巷综掘速度制约因素、煤巷围岩地质力学特性、综掘煤巷复合顶板稳定性渐次演化规律及其影响因素、空顶区和支护区复合顶板变形破坏机制等方面开展了系统研究,揭示了综掘煤巷空顶区及支护区复合顶板的稳定性机理,进而提出了综掘煤巷复合顶板安全控制技术,并在复合顶板煤巷进行了综掘实践,主要成果如下:(1)通过对《赵庄矿复合顶板煤巷综掘速度制约因素调查问卷》进行因子分析,获得了复合顶板煤巷综掘速度的制约因素。影响赵庄矿复合顶板煤巷综掘速度的因素主要包括5个方面:围岩安全控制技术因子、工程地质环境因子、掘进装备因子、职工素质因子和施工管理因子。(2)深入分析了煤巷综掘施工过程中复合顶板稳定性渐次演化规律及其影响因素,揭示了综掘煤巷不同空间区域复合顶板稳定性机理。综掘煤巷复合顶板的应力、变形及塑性破坏沿巷道轴向方向及顶板纵深方向均呈渐次演化特征,尤其是综掘工作面空顶区和支护区顶板的浅部岩层,应力显着降低,承载能力急剧下降,变形逐渐增大。围岩条件、掘进参数和巷道支护对综掘煤巷支护区和空顶区复合顶板稳定性影响规律表明,空顶区和支护区顶板的下沉量:随煤巷埋深和侧压系数的增大而增大;随顶板岩层分层厚度的增大呈非线性减小;随煤巷掘进宽度的增大而增大,且增幅呈非线性降低特征;随巷高的增大呈非线性增大;随综掘速度的提升而减小;随掘进循环步距的增大而增大;随滞后支护距离的增大而增大,空顶区顶板比支护区顶板对滞后支护距离更敏感,且垂直最大位移及其位置跟滞后支护距离密切相关;支护强度对支护区顶板的影响程度明显高于其对空顶区顶板的影响程度。(3)构建了空顶区及支护区复合顶板的力学模型,分析了空顶区及支护区复合顶板的变形破坏特征及稳定性影响因素,进一步揭示了空顶区和支护区复合顶板的变形破坏机制。建立了复合顶板一边简支三边固支的薄板力学模型,运用弹性力学理论求解出空顶区复合顶板任一点的挠度与应力公式;失去下方煤体支撑的空顶区复合顶板在水平应力及岩层自重的复合作用下率先产生挠曲下沉,进而产生层间离层和剪切错动,随着挠曲变形的进一步增大,空顶区顶板下表面产生较大拉应力,四周边缘产生较大的剪切作用力,当拉应力或剪应力超过顶板岩层的极限强度时,顶板将发生失稳。根据空顶区顶板下表面应力值,依据拉应力破坏准则确定出赵庄矿综掘煤巷极限空顶距不超过4.64m;空顶距随巷宽和上覆载荷的增大而减小,空顶距随空顶区顶板岩层厚度的增加而增大。构建了综掘煤巷支护区锚固复合顶板的弹性地基梁力学模型,得出支护区顶板的挠度分布基本特征;系统研究了埋深、垂直应力集中系数、顶板岩层的杨氏模量、巷帮煤体的杨氏模量、巷帮基础厚度、巷道掘进宽度对支护区顶板弯曲变形的影响规律。支护区锚固复合顶板在上覆岩层压力、岩层自重及高水平应力的复合作用下产生弯曲变形,层间离层及剪切错动使复合顶板锚固岩梁的连续性和完整性遭到破坏,在拉应力和剪应力复合作用下将发生失稳。(4)提出了以预应力锚杆和锚索为支护主体的复合顶板“梁-拱”承载结构耦合支护技术及其分步支护技术。分析了围岩防控对策对煤巷综掘速度的影响原因:(1)未能弄清煤巷综掘工作面空顶区顶板的稳定机理,盲目地通过缩短空顶距离的方式来防范空顶区顶板失稳,使掘进循环次数增多,掘进机组进退更加频繁。(2)对综掘煤巷复合顶板稳定空间演化规律及锚固顶板变形失稳机理的研究不够深入,为了使顶板得到稳定控制,在掘进时强调支护的一次性和高强性,从而导致支护工序耗时长,掘进机的开机率较低。(3)悬臂式掘进机配合液压锚杆钻车完成掘进工作时,受二者频繁交叉换位及允许同时支护作业的钻车数量限制影响,掘进循环作业时间延长。(4)对工程地质环境的掌控还不够精细化,全矿井所有回采巷道的掘进工作面均采用同一掘进(空顶距、循环步距)及支护(锚索间排距、支护流程)参数,而未能实时地根据工程地质环境的变化情况对其做出动态调整。在此基础上,提出了煤巷快速综掘复合顶板安全控制思路。复合顶板中安装预应力锚杆后,既可以发挥锚杆的“销钉”作用,又可以增大层面间的摩擦力,从而增强复合顶板的抗剪能力;经预应力锚杆加固与支护后,一定锚固范围内形成的压应力改善了顶板的应力状态,顶板强度得到大幅提高,承载能力将明显增强;锚索既可以将深部稳定岩层与浅部锚杆支护形成的组合梁承载结构连接起来形成厚度更大承载能力更强的顶板组合承载结构,又能增大岩层间的剪切阻抗,有效控制顶板离层,增强复合顶板岩层的连续性,提高复合顶板的整体稳定性;随着锚索锚杆预紧力的加大,复合顶板中压应力的叠加程度逐渐增高,有助于顶板形成刚度更大的承载结构。随着锚索锚杆布设间距的减小,支护应力场的叠加程度将逐步增强,然而,过小的间距虽然形成的承载结构刚度变大,但承载结构范围将有所减小;随着锚索长度的增加,顶板中压应力范围在沿顶板高度方向上不断增大的同时有效支护应力不断降低。煤巷复合顶板天然承载结构平衡拱的形成使其拱内自稳能力不足的岩层成为顶板稳定性控制的重点,同时由于煤巷复合顶板具有逐层渐次垮冒的工程特点,所以,增强拱内岩层的自稳能力并充分调动天然承载结构的承载能力使其相互作用是保持复合顶板稳定的关键,基于此,提出以预应力锚杆和锚索为支护主体的“梁-拱”承载结构耦合支护技术;同时,基于综掘煤巷具有显着的开挖面空间效应,充分利用围岩的自承能力,提出了煤巷快速综掘分步支护技术。(5)基于复合顶板“梁-拱”承载结构耦合支护技术及综掘煤巷分步支护技术,选取典型煤巷为试验巷道,开展复合顶板煤巷综掘的现场试验,取得了良好的应用效果。结合赵庄矿综掘施工条件及53122回风巷工程地质条件,充分发挥预应力锚杆和锚索的支护特性,以构建煤巷复合顶板的“梁-拱”承载结构为出发点,制定了及时安全支护和滞后稳定支护方案,在此基础上优化了综掘工艺流程和施工组织管理。试验结果表明,煤巷围岩保持稳定的同时,综掘速度由9.6m/d提高至12m/d,增幅达25%。
钱立德[7](2019)在《淮南矿区千米深井大断面软岩巷道群锚支护机理研究》文中进行了进一步梳理我国中东部地区是经济发达地区,能源需求量大。随着浅部煤炭资源开发殆尽,淮南矿区主要规划和开采800m以深的煤炭资源,煤层赋存环境以石炭二叠系为主,为海陆交替相碎屑性沉积地层,地壳运动比较活跃,板块褶皱、断层多,由此带来的大断面软岩巷道工程量大。通过对淮南矿区深部巷道工程地质特征分析、群锚支护机理研究,提出支护参数优化设计方法,以张集矿二水平水泵房硐室为工程背景,采用数值计算和现场实测方法对软岩巷道群锚支护进行了分析,得出以下结论:(1)淮南矿区深井巷道所处岩层强度分布不均匀,实际掘进过程中岩性变化大,构成复杂。按工程类比法设计不同巷道的支护,参数差异较小,巷道变形特征表现为变形量大、初期变形速率大、空间效应明显、顶板两帮底鼓变形剧烈、应力扰动敏感等。(2)群锚对围岩体具有壁面约束效应、锚固体承载环效应、锚杆(索)分层承载效应、松散破裂岩体楔固效应。软岩巷道群锚支护后通常存在破裂膨胀稳定区、应变软化区、塑性区和弹性区的分层特征,控制围岩稳定性应以加固巷道壁面浅部破裂膨胀区和应变软化区,激发其成为承载结构,控制塑性区范围向深部围岩扩展的原则。(3)深井软岩巷道支护设计应依次从地质力学、巷道空间位置、围岩与支护耦合作用方面逐步优化。对高应力软岩、含膨胀类成分软岩和极软岩,首先应分类采用不同的支护策略,从而进行具体参数设计。(4)由数值计算可知,锚索间排距为0.6m-1.0m群锚效应明显,有利于围岩的稳定。由现场实测可知,通过加密锚杆、锚索间排距,强化承压环结构的自身承载力,获得了较好的支护效果,巷道围岩变形速率小于lmm/d,确保了水泵房硐室围岩稳定。图[37]表[4]参[68]
王茂盛[8](2019)在《赵庄矿深部大断面复合顶板煤巷变形破坏机理与控制对策》文中进行了进一步梳理煤系地层具有典型的层状特征,工程岩体层理、裂隙、软弱夹层等结构面发育,其中层状复合顶板巷道所占比重较大。复合顶板巷道作为一类复杂困难巷道,其围岩稳定性控制问题一直是巷道支护领域研究的重点和难点。随着矿井开采深度增加,岩体的工程响应与浅部相比将会发生根本变化。对于深部大断面复合顶板煤巷而言,其稳定性控制问题将会更加突出。本文以赵庄矿深部大断面复合顶板煤巷为工程背景,综合采用现场调研、理论分析、数值模拟和现场工程试验等方法,研究了深部大断面复合顶板煤巷变形破坏机理;分析了不同断面巷道围岩受力状态,优化了巷道断面形状;从调控围岩荷载效应出发,提出了以强力锚杆与高预应力锚索为基础,以“密闭围岩、强化小结构、调动大结构”为核心的大、小结构叠加耦合支护技术。主要取得以下结论:(1)进行了巷道围岩地质力学测试,获得了原岩应力场分布规律、围岩粘土矿物含量和围岩力学参数,并对巷道围岩稳定性进行了初步分类。原岩应力场中水平构造应力占主导,最大水平主应力方位角为N350W,侧压系数为1.17。巷道顶板泥岩粘土矿物含量大于50%,遇水易风化碎裂;煤体强度不足8MPa,较为松软。采用模糊聚类分析方法,对赵庄矿区15条煤巷进行了稳定性分类,得到了围岩稳定性分类聚类中心,并建立了煤巷围岩稳定性分类指标模板。(2)总结分析了深部大断面复合顶板煤巷变形破坏特征,阐明了复合顶板离层演化规律,揭示了大断面复合顶板煤巷变形失稳机理。顶板下沉剧烈,冒顶隐患大;煤壁极易片帮,挤压变形显着;支护结构损坏严重,巷道返修率高是大断面复合顶板煤巷典型破坏特征。复合顶板内部结构多变,呈现非连续和跳跃性破坏。大断面煤巷复合顶板离层演化过程为:顶板挠曲—层间剪切—非协调变形—离层扩展;巷道宽度、侧压系数和分层厚度对复合顶板离层变形影响显着。软弱夹层极易导致复合顶板的沿层与穿层破坏,软弱夹层数量增加,冒顶高度和风险增加,软弱夹层的存在是造成复合顶板非连续和跳跃性破坏的关键因素。煤帮破坏程度与范围增加,复合顶板稳定性降低,为了保证巷道稳定,须坚持“顶帮协同控制”的原则。井下潮湿环境加剧顶板风化碎裂,巷道掘出后须及时喷射混凝土层,降低工程岩体强度劣化。大断面煤巷复合顶板在竖向荷载与水平荷载共同作用下产生挠曲离层,随着离层的扩展演化,在顶板上方形成潜在冒落块体;潜在冒落块体挠曲变形过程中造成支护结构失效,支护强度下降,当潜在冒落块体的下滑阻力不足以克服下滑的剪力时,复合顶板将会发生失稳。工程地质条件复杂,围岩强度低;顶板结构多变,离层扩展显着;煤帮松软破碎,难以为顶板提供有效支撑;顶板泥岩易风化碎裂,锚索预应力损失严重;支护方案针对性差,围岩承载能力低是造成大断面复合顶板煤巷变形失稳的关键因素。(3)构建了巷道圆弧拱形顶板受力模型,研究了不同因素影响下顶板承载力学特性,优化了复合顶板煤巷断面形状。以结构力学的观点,构建了复合顶板巷道圆弧拱形顶板受力模型,得到了不同矢跨比和巷道宽度影响下,圆弧拱形顶板不同位置处弯矩、剪力与轴力的变化规律。采用数值软件分析了 11种断面形状影响下巷道围岩的受力状态、塑性区特征与位移分布规律。随着巷道矢跨比的增加,围岩受力状态逐渐变好,有利于围岩的控制。当矢跨比达到0.3后继续增加,巷道受力状态变好的增幅不再明显;同时考虑施工的难度,大断面复合顶板煤巷采用矢跨比为0.3的直墙圆弧拱形断面。(4)从调控围岩荷载效应出发,提出了以强力锚杆与高预应力锚索为基础,以“密闭围岩、强化小结构、调动大结构”为核心的大小结构叠加耦合支护技术。分析了复合顶板煤巷支护存在的主要问题:对工程岩体中的软弱结构面考虑不足,不能正确认识复合顶板变形失稳机理;不重视巷道围岩地质力学测试,巷道支护方式单一,造成区域支护不足和局部支护浪费;对锚杆与锚索的协同作用机理认识不足,不能实现锚杆与锚索的协调支护;缺乏及时的巷道矿压数据监测,对于巷道支护方案设计的合理性不能进行有效的评价。在此基础上,提出了复合顶板煤巷围岩控制思路。锚杆锚索间距增加,支护应力场叠加程度降低,由群体承压拱结构效应向个体效应转化;密集的锚杆锚索支护有利于在围岩中形成双层承压拱结构;锚索间距过小时,虽可形成刚度较大的外层承压拱结构,但锚杆锚索协同承载范围有限。锚杆锚索预紧力增加,支护应力场叠加程度增大,有利于形成刚度更大的双层承压拱结构,增加支护的层次型,有利于提高支护系统的可靠性。锚索长度增加,围岩的支护加固范围逐渐增大,但其有效支护应力有所降低,对于结构极复杂的复合顶板可在锚杆支护的基础上,考虑采用长短锚索,增加支护的层次,形成三层承压拱结构,充分发挥围岩的自承能力。预紧力是影响锚杆锚索对复合顶板控制效果的关键因素,应保证设计预紧力可以在围岩中形成有效压应力区,使软弱夹层处于夹紧状态,避免其劣化和沿层扩展,显着降低复合顶板变形破坏对工程扰动的敏感性。根据大断面煤巷不同深度顶板发生变形破坏程度差异,划分为非稳定层、亚稳定层和稳定层。为保证围岩稳定须重点控制浅部的非稳定层和中部的亚稳定层,并调动深部稳定层承载。把浅部的非稳定层与中部的亚稳定层视为围岩的小结构,深部稳定层视为围岩的大结构。从调控围岩荷载效应出发,提出了以强力锚杆与高预应力锚索为基础,以“密闭围岩、强化小结构、调动大结构”为核心的大、小结构叠加耦合支护技术。(5)基于大小结构叠加耦合支护技术,选取典型的试验巷道,提出具体的支护方案与关键技术参数,并进行现场工程试验,取得了良好的支护效果。大小结构叠加耦合支护技术以“长短结合、强弱结合、疏密结合”的支护系统为依托,形成多层次支护。选取典型的试验巷道,根据具体的工程地质条件选择强力锚杆与高预应力锚索联合支护顶板,形成连续的预应力承载结构,消除或降低复合顶板中软弱结构面的影响;并选择合理的护表构件,同时加强煤帮控制,及时喷层密闭围岩。现场监测结果表明,采用新支护方案后巷道围岩变形量小,长期稳定性高,支护效果好。
舒龙勇[9](2019)在《煤与瓦斯突出的关键结构体致灾机理》文中研究表明煤与瓦斯突出机理是煤矿安全领域持续关注的重大科学问题,其研究历史已有180余年之久,期间国内外大量的科学家和工程技术人员进行了多种研究与尝试,提出了多种假说、预测预警与防治方法,但煤与瓦斯突出作为一种特殊的煤岩动力灾害仍时有发生,突出防治至今仍然是一个世界性难题。论文紧紧围绕煤与瓦斯突出发生位置的特殊地质结构环境特征,将煤与瓦斯突出机理研究与现场工程条件相结合,建立了煤与瓦斯突出关键结构体致灾理论。通过采用实验室实验、理论分析、数值模拟、物理模拟和现场突出实例剖析等相结合的手段,主要试图回答了 4个关键科学技术问题:①煤与瓦斯突出孕育和启动需要什么样的特殊地质结构环境?突出煤体有何特殊之处?②采掘工作面周围采动应力和瓦斯压力是如何相互作用、如何联合致灾的?③煤与瓦斯突出机理研究如何与现场工程结构相结合?④突出的主控因素是什么?能否提出统一的突出启动判据?突出防治工作中到底该预测和防控什么?论文的主要研究内容和成果包括:(1)借鉴“瓦斯赋存构造逐级控制机理”的相关思想,对煤与瓦斯突出矿区分布及其地质背景、突出矿区原岩应力场分布规律和突出发生位置的地质结构环境特征进行了分析研究。研究表明:板缘构造带、板内造山带、深层构造陡变带、深层活动断裂带、推覆构造带和强变形带是控制煤与瓦斯突出矿区分布的敏感地带;煤与瓦斯突出矿区应力场类型属于大地动力场型,受构造或构造运动作用影响显着;地质构造运动对煤与瓦斯突出的贡献主要体现为形成了构造煤体,营造了利于瓦斯封存的高应力环境,提供了利用突出启动的地质结构环境。(2)突出煤层和非突出煤层的工业分析结果、吸附常数、瓦斯放散初速度无明显差异,不存在一个能明显划分煤层有无突出危险性的临界值;吸附常数a值、瓦斯放散初速度△p随煤变质程度的升高呈现出先降低后升高的趋势;秦跃平式(Qt=AB√t/(1+B√t))用于描述构造煤煤样解吸量的时变规律具有明显优势,煤体的破碎或粉化程度越高、瓦斯放散初速度越大;能反映现场突出煤体性质的型煤试件受载变形破坏过程中声发射特征、力学行为均与原煤试件存在较大差异,呈现出较好的理想塑性材料特征;原煤试件全应力应变过程会先后经历弹性阶段→应变硬化阶段→应变软化阶段→残余强度阶段;而型煤试件先后会经历弹性阶段→应变硬化阶段→理想塑性阶段→应变软化阶段→残余强度阶段(单轴载荷或围压较低时,残余强度阶段不明显)。(3)基于煤的双重孔隙介质模型,建立了考虑采掘扰动条件下的双重孔隙结构煤体气固耦合控制方程组,借助COMSOL Mulphysics软件开展了采掘工作面前方采动应力场与瓦斯压力场互馈机制研究。结果表明:在松软低渗煤层中,由于松软低渗煤层本身强度较低(具备了突出启动的固体物质基础)、渗透率较低,煤层中更容易蓄积高能瓦斯,采动应力集中引起的低渗区和卸压破坏区相当于阻碍深部松软突出煤体瓦斯逸散和能量释放的“阻挡墙”,形成了“采动成因”异常地质结构,在放炮作业、深截(割)作业、顶底板破断等扰动条件下,可能会引起采掘工作面前方“阻挡墙”失稳破坏,深部含高能瓦斯的松软煤体瞬间暴露,发生煤岩体中弹性潜能和瓦斯内能的不可控释放,酿成煤与瓦斯突出事故。(4)诸如软硬煤变化带、煤层厚度变异区、褶曲构造带、断层构造带等“天然成因”地质结构异常区附近存在原岩应力异常区,这些异常原岩应力集中会导致该区煤岩体蓄积较高的弹性潜能,同时造成地质结构异常区附近存在渗透率降低区,对煤体瓦斯起到了良好的圈闭作用,使得该区煤体集聚大量高能瓦斯;当采掘工作面接近这些地质结构异常区时,异常的采动应力集中造成采掘面前方煤体渗透性进一步降低,阻碍了采掘面前方深部煤体中瓦斯向采掘空间逸散,使得采掘面前方煤体中保持着较高瓦斯压力梯度,采掘面前方同时存在着异常的高弹性能和高瓦斯内能蓄积区,受煤矿井下放炮作业、深截(割)作业、顶底板破断等动载扰动时,可能会引起煤岩体中弹性潜能和煤体中瓦斯内能的不可控释放,造成煤与瓦斯突出事故的发生。(5)提出了统一的用于描述突出发生位置工程结构环境特征的关键结构体模型,建立了煤与瓦斯突出的关键结构体致灾理论。研究表明:从煤与瓦斯突出整个过程来看,关键结构体是突出得以成功启动的必要条件;基于关键结构体模型,从突出启动机制的角度将典型突出分为准静载作用下的延迟突出(D-QSL)和动载作用下的瞬时突出(I-DL),突出过程分为准备、启动、发展和终止4个阶段;突出准备阶段始于地质构造运动对煤体的改造,突出激发隶属于突出准备阶段,表现为结构2突变失稳,突出启动是结构1暴露失稳这一突变点,结构2突变失稳完成对突出的激发后,突出能否得以成功启动决定于结构1的受力和蓄能状态;结合关键结构体模型建立了突出激发的力学判据Im和能量判据Ie、突出启动的力学判据Cm和能量判据Ce。(6)基于煤与瓦斯突出关键结构体致灾理论,进一步研究揭示了煤矿深部开采卸荷消能与煤岩介质属性改造协同防突原理,对突出危险区超前探测、突出危险性预测预警和突出灾害治理等工作有了一些新的认识。主要包括:现场防突工程实践应围绕着“探测关键结构体—消除关键结构体—防控关键结构体”的整体思路,注重对采掘工作面前方“关键结构体”精细探测技术和装备的开发;突出预测工作应更加注重对突出启动直接动力——瓦斯压力的测定和应用;突出预警工作应注重对关键结构体中“结构2”失稳突变前兆信息的连续实时监测;防治突出工作应关注突出激发和启动两个环节,消除突出激发和启动条件是2个不同且有效的防突手段,改变关键结构体中“结构1”的力能环境是根本措施。
李琰庆,王传兵,杨永刚,张元豹[10](2018)在《淮南矿区深部煤巷变形破坏机制及支护技术》文中指出针对淮南矿区开采深度大、构造应力高、地质构造复杂、围岩松软等条件下的煤巷支护难题,系统研究了深部煤巷围岩变形破坏机制,提出帮部在垂直压剪和横向顶拉作用下产生"〈"或"ㄟ"形破坏;底板在两帮压膜效应和远场应力挤压下产生塑性流动,呈"凸"形破坏;顶板在垂直压应力下产生张拉导致顶板岩层破断或失锚,发生""形破坏。在此基础上提出"合理巷道设计源头让压、高预紧力改善应力状态、强化表面支护协调变形、围岩注浆提高承载能力、补强短板形成支护整体"煤巷支护方法、"地质-矿压"信息动态支护设计方法以及支护质量控制体系,形成深部煤巷成套支护技术。工程实践证明,该技术能有效控制深部煤巷的变形破坏,提高支护效能,有助于实现安全经济支护。
二、淮南矿区煤巷稳定性分类及工程对策(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、淮南矿区煤巷稳定性分类及工程对策(论文提纲范文)
(1)淮南潘集矿区深部煤系岩石力学性质及其控制因素研究(论文提纲范文)
摘要 |
Abstract |
1 绪论 |
1.1 选题背景与研究意义 |
1.2 国内外研究现状 |
1.2.1 煤炭深部开采及赋存条件探查研究现状 |
1.2.2 深部赋存条件下的岩石力学性质研究现状 |
1.2.3 沉积特性和岩体结构对岩石力学性质的影响研究现状 |
1.2.4 存在的问题与发展趋势 |
1.3 主要研究内容和方法 |
1.3.1 论文主要研究内容 |
1.3.2 研究方法与技术路线 |
1.4 论文研究工作过程与工作量 |
2 研究区工程概况与地质特征 |
2.1 研究区勘查工程概况 |
2.1.1 研究区位置及范围 |
2.1.2 潘集矿区深部勘查工程概况 |
2.2 研究区地层特征 |
2.2.1 区域地层 |
2.2.2 研究区含煤地层 |
2.3 研究区地质构造特征 |
2.3.1 区域构造及演化 |
2.3.2 研究区构造特征 |
2.4 研究区水文地质特征 |
2.4.1 区域水文地质 |
2.4.2 研究区水文地质特征 |
2.5 本章小结 |
3 潘集矿区深部煤系岩石沉积特性及岩体结构特性分析 |
3.1 潘集矿区深部煤系岩石学特征 |
3.1.1 煤系岩石显微薄片鉴定 |
3.1.2 煤系砂岩岩石学特征 |
3.1.3 煤系泥岩岩石学特征 |
3.2 潘集矿区深部煤系岩性组成特征 |
3.2.1 研究区13-1煤顶底板岩性类型及分布特征 |
3.2.2 研究区11-2煤顶底板岩性类型及分布特征 |
3.2.3 研究区8煤顶底板岩性类型及分布特征 |
3.2.4 研究区4-1煤顶底板岩性类型及分布特征 |
3.2.5 研究区1(3)煤顶底板岩性类型及分布特征 |
3.3 潘集矿区深部煤系沉积环境分析 |
3.3.1 研究区煤系砂体剖面分布特征 |
3.3.2 研究区煤系沉积环境分析 |
3.4 潘集矿区深部煤系岩体结构特性分析 |
3.4.1 主采煤层顶底板岩石质量评价 |
3.4.2 主采煤层顶底板岩体完整性评价 |
3.5 本章小结 |
4 潘集矿区深部煤系赋存条件探查及其展布规律研究 |
4.1 潘集矿区深部地应力测试与分布特征研究 |
4.1.1 深部地应力测试工程布置 |
4.1.2 深部地应力测试方法与测试结果 |
4.1.3 淮南潘集矿区深部地应力分布特征 |
4.1.4 深部构造对地应力场的控制作用分析 |
4.2 潘集矿区深部地温探查与地温展布特征评价 |
4.2.1 深部地温测试与测温数据处理 |
4.2.2 研究区地温梯度及分水平地温场展布特征 |
4.2.3 深部主采煤层地温场特征 |
4.3 本章小结 |
5 潘集矿区深部煤系岩石物理力学性质试验研究 |
5.1 深部煤系岩石采样与制样 |
5.1.1 研究区采样钻孔工程布置 |
5.1.2 煤系岩石样品采集与制备 |
5.2 深部煤系岩石物理性质测试与评价 |
5.3 常规条件下深部煤系岩石力学性质试验研究 |
5.3.1 常规条件岩石力学试验与结果分析 |
5.3.2 煤系岩石力学性质参数相关性分析 |
5.3.3 不同层位岩石力学性质变化特征 |
5.3.4 本节小结 |
5.4 围压条件下煤系岩石力学性质试验研究 |
5.4.1 室内三轴试验装置与试验过程 |
5.4.2 深部煤系岩石三轴试验结果与分析 |
5.4.3 深部地应力场下煤系岩石力学性质变化规律与预测模型 |
5.4.4 本节小结 |
5.5 温度条件下煤系岩石力学性质试验研究 |
5.5.1 温度条件下试验装置与试验方案 |
5.5.2 深部温度条件下煤系岩石力学参数变化特征 |
5.5.3 温度条件对深部煤系岩石力学性质的影响规律分析 |
5.5.4 本节小结 |
5.6 本章小结 |
6 深部煤系岩石力学性质差异性及其控制因素研究 |
6.1 深部煤系岩石力学性质差异性分布 |
6.1.1 煤系岩石力学性质试验参数分布的差异性 |
6.1.2 主采煤层顶底板岩石力学性质垂向分布的差异性 |
6.1.3 主采煤层顶底板岩石力学性质平面分布的差异性 |
6.2 深部煤系岩石沉积特性对力学性质的控制作用 |
6.2.1 煤系岩石力学性质的岩性效应 |
6.2.2 煤系岩石矿物成分对力学性质的控制作用 |
6.2.3 煤系岩石微观结构对力学性质的控制作用 |
6.3 深部岩体结构性特征对力学性质的影响 |
6.3.1 岩体结构性特征对岩石力学性质的影响 |
6.3.2 深部构造特征对岩石力学性质的影响 |
6.4 深部赋存环境对煤系岩石力学性质的影响 |
6.4.1 深部地应力环境对煤系岩石力学性质的影响 |
6.4.2 深部地温环境对煤系岩石力学性质的影响分析 |
6.5 本章小结 |
7 主要结论与创新点 |
7.1 主要结论 |
7.2 研究创新点 |
7.3 研究展望 |
参考文献 |
致谢 |
作者简介及读研期间主要科研成果 |
(2)潘二煤矿18224工作面回采巷道围岩稳定性分析与支护技术研究(论文提纲范文)
摘要 |
ABSTRACT |
1 绪论 |
1.1 问题的提出 |
1.2 国内外研究现状 |
1.2.1 围岩稳定性分类国内外研究现状 |
1.2.2 巷道支护理论国内外研究现状 |
1.2.3 巷道支护技术国内外研究现状 |
1.2.4 存在的问题 |
1.3 研究的主要内容 |
1.4 研究的主要方法 |
2 18224工作面回采巷道围岩地质力学参数测试 |
2.1 煤层赋存及试验工作面概况 |
2.2 巷道围岩物理力学性质测试分析 |
2.3 地应力测量分析 |
2.4 井下锚杆拉拔实验 |
2.5 本章小结 |
3 18224工作面回采巷道围岩稳定性分析 |
3.1 回采巷道围岩稳定性分类指标选取 |
3.2 回采巷道围岩稳定性分类 |
3.2.1 回采巷道模糊聚类分析 |
3.2.2 计算实例巷道围岩分类 |
3.3 回采巷道围岩次分类 |
3.4 本章小结 |
4 巷道支护参数设计 |
4.1 巷道破坏及锚杆支护机理研究 |
4.1.1 巷道破坏机理分析 |
4.1.2 锚杆支护机理 |
4.2 支护参数计算 |
4.2.1 巷道名称、位置、用途以及巷道设计断面 |
4.2.2 支护形式选择 |
4.2.3 支护参数理论计算 |
4.2.4 18224工作面轨道顺槽锚杆支护平面及断面图 |
4.3 支护参数数值模拟计算 |
4.3.1 数值模拟方案及步骤 |
4.3.2 18224工作面回采矿压显现特征 |
4.4 锚杆支护参数对巷道的变形影响分析 |
4.4.1 锚杆直径对巷道变形的影响 |
4.4.2 锚杆长度对巷道变形的影响 |
4.4.3 锚杆间排距对巷道变形的影响 |
4.5 采动期间支护方案两巷稳定性分析 |
4.5.1 工作面回采期间轨道巷围岩塑性区分布特征 |
4.5.2 工作面回采期间轨道巷围岩位移变化特征 |
4.5.3 工作面回采期间轨道巷应力分布特征 |
4.6 本章小结 |
5 巷道支护效果实测分析 |
5.1 矿压观测的内容及方法 |
5.2 18224掘进期间矿压观测及分析 |
5.2.1 掘进期间巷道围岩表面位移和深部位移监测 |
5.2.2 掘进期间巷道围岩离层位移监测 |
5.2.3 掘进期间巷道锚杆受力状况监测 |
5.3 18224回采期间矿压观测及分析 |
5.3.1 回采期间巷道围岩表面位移和深部位移监测 |
5.3.2 回采期间巷道锚杆受力监测 |
5.4 小结 |
6 结论及展望 |
6.1 主要结论 |
6.2 存在问题及展望 |
参考文献 |
致谢 |
作者简介及读研期间主要科研成果 |
(3)深部巷道煤岩复合顶板厚层跨界锚固承载机制研究(论文提纲范文)
致谢 |
摘要 |
abstract |
变量注释表 |
1 绪论 |
1.1 研究背景及意义 |
1.2 国内外研究现状 |
1.3 主要研究内容与方法 |
1.4 技术路线 |
2 煤岩复合顶板巷道变形破坏特征 |
2.1 矿井概况 |
2.2 21205 工作面运输巷概况 |
2.3 地应力测试 |
2.4 围岩物理力学性能测试 |
2.5 煤岩样微观测试 |
2.6 巷道变形特征及控制效果评价 |
2.7 本章小结 |
3 煤岩组合试样力学特性差异及能量耗散过程 |
3.1 数字散斑相关测量方法 |
3.2 实验方案及设备 |
3.3 不同高比煤岩组合试样的力学特性 |
3.4 不同高比煤岩组合试样的应变场演变规律 |
3.5 不同高比煤岩组合试样的能量耗散规律 |
3.6 本章小结 |
4 基于应力释放的煤岩复合顶板巷道渐进破坏规律 |
4.1 关键参数确定及数值模型建立 |
4.2 无支护条件下巷道围岩位移场与裂隙场演化规律 |
4.3 顶煤厚度对巷道围岩稳定性的影响规律 |
4.4 煤岩复合顶板巷道的控制原则 |
4.5 本章小结 |
5 煤岩复合顶板厚层跨界锚固机制 |
5.1 锚固系统研发背景 |
5.2 不同长度锚杆锚固区损伤演化规律 |
5.3 顶板厚层跨界锚固原理及厚层锚固系统研发 |
5.4 巷道支护系统设计及模拟分析 |
5.5 本章小结 |
6 煤岩复合顶板厚层锚固承载作用机制 |
6.1 相似模拟材料力学测试及参数确定 |
6.2 相似模拟实验设计及模型建立 |
6.3 围岩应力演化特征及巷道变形破坏规律 |
6.4 顶板厚层锚固系统的抗冲击特性 |
6.5 本章小结 |
7 跨界长锚固柔化结构设计及多工况力学性能分析 |
7.1 长锚杆适用条件及新型柔性锚杆研发 |
7.2 实验的设备、材料及方法 |
7.3 柔性锚杆关键参数选择及拉伸力学性能研究 |
7.4 长期荷载下柔性锚杆力学特性研究 |
7.5 循环荷载下柔性锚杆力学特性研究 |
7.6 柔性锚杆现场应用研究 |
7.7 本章小结 |
8 工业性试验研究 |
8.1 葫芦素煤矿21205 运输巷典型工程实例 |
8.2 门克庆煤矿3108 运输巷典型工程案例 |
8.3 本章小结 |
9 结论 |
9.1 主要结论 |
9.2 主要创新点 |
9.3 研究展望 |
参考文献 |
作者简历 |
学位论文数据集 |
(4)千米深井巷道围岩支护—改性—卸压协同控制原理及技术(论文提纲范文)
摘要 |
abstract |
第1章 绪论 |
1.1 选题意义 |
1.2 国内外研究概况—文献综述 |
1.2.1 深部高应力巷道围岩控制机理研究现状 |
1.2.2 锚杆支护机理研究现状 |
1.2.3 巷道围岩注浆改性机理研究现状 |
1.2.4 采动巷道水力压裂卸压机理研究现状 |
1.2.5 存在的问题 |
1.3 论文主要研究内容 |
1.4 论文研究方法与技术路线 |
1.4.1 研究方法 |
1.4.2 技术路线 |
第2章 千米深井巷道围岩大变形机理及协同控制方法 |
2.1 千米深井巷道地质力学条件及支护现状 |
2.1.1 试验巷道地质与生产条件 |
2.1.2 巷道原支护方案与状况 |
2.1.3 巷道支护存在的问题 |
2.2 巷道围岩物理力学特性研究 |
2.3 千米深井巷道围岩大变形数值模拟分析 |
2.3.1 数值模拟方案及参数 |
2.3.2 地应力对巷道围岩变形影响分析 |
2.3.3 围岩强度劣化对巷道围岩变形影响分析 |
2.3.4 工作面长度对巷道围岩变形影响分析 |
2.3.5 偏应力对巷道围岩变形影响分析 |
2.3.6 千米深井软岩巷道围岩大变形机理 |
2.4 巷道围岩控制方法确定 |
2.5 本章小结 |
第3章 巷道支护-改性-卸压协同控制相似材料模型试验研究 |
3.1 试验方案 |
3.1.1 试验工程背景 |
3.1.2 试验内容 |
3.1.3 试验方案 |
3.2 模型相似材料与参数 |
3.2.1 模型相似材料选取 |
3.2.2 支护-改性-卸压相似参数 |
3.3 大型高刚度可旋转采场相似模型试验系统 |
3.3.1 高刚度可旋转式承载框架 |
3.3.2 液压双向加载系统 |
3.3.3 伺服控制系统 |
3.3.4 多源信息监测系统 |
3.4 模拟方案与模型铺设 |
3.5 工作面开采矿压规律分析 |
3.5.1 工作面开采覆岩破断形态及位移变化规律 |
3.5.2 水力压裂对工作面回采覆岩断裂及裂隙分布的影响 |
3.5.3 工作面开采阶段拟开挖巷道围岩采动应力演化规律 |
3.5.4 工作面中部底板采动应力演化规律 |
3.6 锚杆锚索支护巷道相似材料模型试验结果分析 |
3.6.1 锚杆锚索支护方案模型内部应力分布规律 |
3.6.2 锚杆锚索支护方案模型底板应力演化规律 |
3.6.3 锚杆锚索支护巷道支护体受力变化规律 |
3.6.4 锚杆锚索支护巷道围岩裂隙场分布及变形规律 |
3.7 支护-改性-卸压协同控制巷道相似模型试验结果分析 |
3.7.1 支护-改性-卸压协同控制方案模型内部应力分布规律 |
3.7.2 支护-改性-卸压协同控制方案模型底板应力演化规律 |
3.7.3 支护-改性-卸压协同控制巷道支护体受力变化规律 |
3.7.4 支护-改性-卸压协同控制巷道围岩裂隙场分布及变形规律 |
3.8 本章小结 |
第4章 巷道支护-改性-卸压协同控制数值模拟研究 |
4.1 相似材料模型尺度下巷道支护-改性-卸压协同控制原理数值模拟 |
4.1.1 相似材料模型尺度下数值计算模型建立 |
4.1.2 工作面回采煤岩层应力及变形情况 |
4.1.3 千米深井巷道围岩受力变形及破坏特征 |
4.1.4 数值模拟与相似材料模型试验对比分析 |
4.2 井下工程尺度下巷道支护-改性-卸压协同控制原理数值模拟 |
4.2.1 井下工程尺度下数值计算模型建立 |
4.2.2 千米深井巷道围岩支护-改性-卸压协同控制原理 |
4.3 本章小结 |
第5章 巷道支护-改性-卸压协同控制技术研究 |
5.1 千米深井巷道锚杆承载特性 |
5.1.1 CRMG700 型超高强度高冲击韧性锚杆开发 |
5.1.2 锚杆蠕变试验及分析 |
5.1.3 锚杆拉、剪、扭、弯及冲击复合应力承载试验 |
5.2 高压劈裂注浆改性材料与技术 |
5.2.1 微纳米有机无机复合改性材料及性能 |
5.2.2 煤样注浆改性剪切力学性能试验研究 |
5.2.3 高压劈裂注浆改性井下试验 |
5.3 水力压裂卸压技术 |
5.3.1 水力压裂卸压机具与设备 |
5.3.2 水力压裂卸压工艺 |
5.3.3 压裂效果检测与评价 |
5.4 本章小结 |
第6章 巷道支护-改性-卸压协同控制井下试验 |
6.1 试验巷道支护-改性-卸压协同控制方案 |
6.2 千米深井巷道支护-改性-卸压协同控制井下实施 |
6.2.1 高预应力锚杆支护井下实施 |
6.2.2 超前高压劈裂注浆改性井下实施 |
6.2.3 水力压裂卸压井下实施 |
6.3 千米深井巷道围岩矿压监测与效果分析 |
6.3.1 井下矿压监测测站布置 |
6.3.2 巷道变形与支护结构受力监测与分析 |
6.3.3 一维采动应力监测与分析 |
6.3.4 三维采动应力监测与分析 |
6.3.5 工作面液压支架工作阻力变化分析 |
6.4 本章小结 |
第7章 结论与展望 |
7.1 主要结论 |
7.2 创新点 |
7.3 展望 |
参考文献 |
致谢 |
读博期间发表的学术论文与其他研究成果 |
(5)高应力软岩巷道锚杆支护优化及工程应用研究(论文提纲范文)
致谢 |
摘要 |
ABSTRACT |
1 绪论 |
1.1 研究背景与意义 |
1.2 国内外研究现状 |
1.2.1 高地应力对巷道稳定性影响研究现状 |
1.2.2 锚固体载荷传递机制研究现状 |
1.2.3 锚固体锚固影响因素及锚固失效研究 |
1.2.4 地下工程锚固围岩理论计算研究现状 |
1.2.5 高预应力锚杆工程应用研究现状 |
1.3 目前存在的主要问题 |
1.4 主要研究内容与技术路线 |
1.4.1 主要研究内容 |
1.4.2 技术路线 |
2 深部矿区地应力分布规律研究 |
2.1 地应力概述 |
2.1.1 地应力成因 |
2.1.2 地应力及高应力软岩判别标准 |
2.2 安徽、山东矿区地应力分布特点 |
2.2.1 安徽、山东垂直应力随埋深变化规律 |
2.2.2 安徽、山东矿区水平主应力随埋深变化规律 |
2.2.3 安徽、山东矿区侧压系数随埋深变化规律 |
2.3 潘三煤矿地应力分布规律及对巷道稳定影响 |
2.3.1 淮南矿区及潘三矿地质概况 |
2.3.2 潘三煤矿地应力测试方案 |
2.3.3 潘三煤矿地应力测量结果 |
2.3.4 潘三煤矿地应力分布及对巷道影响 |
2.4 本章小结 |
3 巷道布置方向对锚杆支护围岩影响研究 |
3.1 数值计算模型及研究方案 |
3.1.1 数值计算模型 |
3.1.2 不同巷道布置方向围岩计算条件 |
3.2 不同巷道布置方向对锚杆支护围岩分析 |
3.2.1 围岩应力的分布规律 |
3.2.2 锚杆轴力的演化规律 |
3.3 不同巷道布置方向锚杆监测点轴力分析 |
3.4 本章小结 |
4 基于拉拔试验锚杆加固岩体影响因素研究 |
4.1 锚杆拉拔力学试验方案及内容 |
4.1.1 正交试验统计分析方法 |
4.1.2 试验目的及方案 |
4.1.3 试验装置与材料 |
4.2 拉拔试验结果分析 |
4.2.1 锚杆拉拔破坏失效形式 |
4.2.2 锚杆拉拔全荷载位移分析 |
4.2.3 锚杆拉拔过程效果分析 |
4.3 正交试验结果分析 |
4.3.1 极差分析 |
4.3.2 方差分析 |
4.4 锚固因素敏感性分析 |
4.5 本章小结 |
5 高预应力全长锚固工艺研究 |
5.1 高预应力减摩垫片研发 |
5.1.1 锚杆预应力施加现状 |
5.1.2 垫片施加预应力理论分析 |
5.1.3 扭矩-预应力转化试验 |
5.2 创建高预应力全长锚固工艺及设计锚杆 |
5.2.1 传统锚杆支护受力形式 |
5.2.2 高预应力后张法全长锚固工艺 |
5.2.3 高预应力全长锚固锚杆设计 |
5.3 数字化测力锚杆实时监测系统 |
5.3.1 数字化测力锚杆系统简介 |
5.3.2 测力锚杆数据采集系统 |
5.3.3 数据接收分析系统 |
5.4 高预应力全长锚固工艺试验验证 |
5.4.1 高预应力全长锚固工艺室内试验分析 |
5.4.2 高预应力全长锚固工艺现场验证 |
5.6 本章小结 |
6 非均匀应力场预应力全长锚固锚杆支护机理 |
6.1 围岩-锚杆支护机理研究 |
6.2 预应力全长锚固锚杆支护围岩理论模型 |
6.2.1 巷道围岩力学计算模型及假设 |
6.2.2 预应力全长锚固锚杆支护计算模型 |
6.3 锚固围岩-锚杆受力分析 |
6.3.1 围岩-锚杆受力基本条件 |
6.3.2 弹性区围岩受力分析 |
6.3.3 非锚固软化区围岩受力分析 |
6.3.4 锚固软化区围岩-锚杆受力分析 |
6.3.5 锚固破碎区围岩-锚杆受力分析 |
6.4 锚杆支护影响因素分析 |
6.4.1 侧压系数与锚杆支护影响关系 |
6.4.2 预应力与锚杆支护影响关系 |
6.4.3 岩体弹性模量与锚杆支护影响关系 |
6.4.4 锚杆长度与锚杆支护影响关系 |
6.5 巷道锚杆轴力监测 |
6.5.1 试验巷道地质概况 |
6.5.2 测力锚杆结果验证 |
6.6 本章小结 |
7 高预应力全长锚固支护控制方法及工程应用 |
7.1 锚杆优化支护控制方法 |
7.1.1 锚杆优化设计支护方案 |
7.1.2 锚杆优化支护设计原则 |
7.2 潘三矿工程应用概况 |
7.2.1 巷道地质概况 |
7.2.2 围岩物理力学性质 |
7.2.3 巷道初始支护设计 |
7.2.4 巷道初始支护监测 |
7.3 锚杆支护方案优化及验证 |
7.3.1 锚杆支护方案优化 |
7.3.2 支护优化验证 |
7.4 本章小结 |
8 结论与展望 |
8.1 主要结论 |
8.2 主要创新点 |
8.3 进一步研究的建议与展望 |
参考文献 |
作者简历及攻读博士学位期间取得的研究成果 |
学位论文数据集 |
(6)赵庄矿综掘煤巷复合顶板稳定机制与安全控制技术(论文提纲范文)
摘要 |
abstract |
1 绪论 |
1.1 研究背景及意义 |
1.2 国内外研究现状 |
1.2.1 锚杆支护技术发展与支护理论研究现状 |
1.2.2 煤巷复合顶板变形机理及其控制研究现状 |
1.2.3 煤巷掘进工作面围岩稳定性研究现状 |
1.2.4 煤巷综掘技术及其应用现状 |
1.2.5 存在的主要问题 |
1.3 研究内容与研究方法 |
1.3.1 主要研究内容 |
1.3.2 研究方法与技术路线 |
2 煤巷围岩地质力学特性及综掘速度制约因素 |
2.1 赵庄矿工程地质环境 |
2.1.1 工程地质条件 |
2.1.2 地应力场分布规律 |
2.2 煤巷围岩力学特性测试 |
2.2.1 围岩矿物成分测试 |
2.2.2 围岩基本物理力学参数测定 |
2.3 煤巷顶板结构特征探测 |
2.3.1 煤巷复合顶板基本特征及分类 |
2.3.2 煤巷顶板内部结构探测 |
2.4 复合顶板煤巷综掘施工现状 |
2.4.1 煤巷综掘施工方案 |
2.4.2 煤巷综掘速度现状 |
2.5 复合顶板煤巷综掘速度制约因素 |
2.5.1 复合顶板煤巷综掘速度制约因素的基本构成 |
2.5.2 复合顶板煤巷综掘速度制约因素因子分析 |
2.5.3 复合顶板煤巷快速综掘的实施途径分析 |
2.6 本章小结 |
3 综掘煤巷复合顶板稳定性演化规律及其影响因素 |
3.1 煤巷综掘工艺及空间区划 |
3.1.1 煤巷综掘工艺描述 |
3.1.2 综掘煤巷空间区划 |
3.2 综掘煤巷复合顶板稳定性演化规律 |
3.2.1 综掘煤巷数值计算模型 |
3.2.2 顶板应力渐次演化规律 |
3.2.3 顶板变形动态演化规律 |
3.2.4 顶板塑性区演化规律 |
3.3 综掘煤巷复合顶板稳定性影响因素分析 |
3.3.1 综掘煤巷复合顶板稳定性影响因素分类 |
3.3.2 围岩条件对顶板稳定性的影响规律 |
3.3.3 掘进参数对顶板稳定性的影响规律 |
3.3.4 巷道支护对顶板稳定性的影响规律 |
3.4 本章小结 |
4 综掘煤巷复合顶板变形破坏机制研究 |
4.1 综掘煤巷空顶区复合顶板变形破坏机制 |
4.1.1 薄板小挠度弯曲基本理论 |
4.1.2 空顶区复合顶板变形规律 |
4.1.3 空顶区复合顶板变形破坏机制 |
4.2 空顶距的确定及其影响因素分析 |
4.2.1 综掘煤巷空顶距的确定 |
4.2.2 空顶距影响因素敏感性分析 |
4.3 综掘煤巷支护区复合顶板变形破坏机制 |
4.3.1 煤巷复合顶板变形破坏基本特征 |
4.3.2 支护区复合顶板弯曲变形规律 |
4.3.3 支护区复合顶板变形破坏机制 |
4.4 本章小结 |
5 综掘煤巷复合顶板安全控制技术研究 |
5.1 综掘煤巷复合顶板安全控制思路 |
5.1.1 围岩防控对策对煤巷掘进速度的影响 |
5.1.2 快速综掘煤巷复合顶板安全控制思路 |
5.2 锚杆(索)对复合顶板的作用效应分析 |
5.2.1 锚杆对复合顶板的控制作用 |
5.2.2 锚索对复合顶板的控制作用 |
5.2.3 锚杆(索)支护关键影响因素分析 |
5.3 综掘煤巷复合顶板安全控制技术 |
5.3.1 复合顶板“梁-拱”承载结构耦合支护技术 |
5.3.2 综掘煤巷复合顶板分步支护技术 |
5.4 本章小结 |
6 现场工程试验 |
6.1 综掘煤巷工程地质条件 |
6.2 复合顶板煤巷综掘施工方案优化 |
6.2.1 综掘煤巷支护方案优化 |
6.2.2 煤巷综掘工艺流程优化 |
6.2.3 煤巷综掘施工组织优化 |
6.3 复合顶板煤巷综掘试验效果分析 |
6.4 本章小结 |
7 结论及展望 |
7.1 主要结论 |
7.2 创新点 |
7.3 展望 |
参考文献 |
致谢 |
作者简介 |
(7)淮南矿区千米深井大断面软岩巷道群锚支护机理研究(论文提纲范文)
摘要 |
Abstract |
1 绪论 |
1.1 研究目的及意义 |
1.2 国内外研究现状 |
1.2.1 软岩巷道支护技术 |
1.2.2 软岩巷道支护理论 |
1.3 研究内容 |
2 淮南矿区高地压软岩群锚巷道变形特征 |
2.1 淮南矿区深井巷道工程地质特征 |
2.1.1 基岩段地层结构 |
2.1.2 基岩水文地质 |
2.1.3 巷道所处地层特征 |
2.2 淮南矿区深井巷道群锚支护参数 |
2.3 典型软岩群锚巷道变形特征 |
2.3.1 潘一矿东区-845m车场巷道变形特征 |
2.3.2 顾桥矿中央区-956m装载胶带机巷变形特征 |
2.3.3 朱集矿深部井车场巷道变形特征 |
2.4 本章小结 |
3 煤矿深井软岩巷道群锚支护机理 |
3.1 群锚的作用效应 |
3.1.1 壁面约束效应 |
3.1.2 承载环效应 |
3.1.3 分层承载效应 |
3.1.4 楔固效应 |
3.2 群锚作用范围剪应力解析解 |
3.3 群锚与巷道围岩相互作用分析 |
3.3.1 巷道围岩形变分区 |
3.3.2 巷道围岩应力及变形弹塑性解析解 |
3.4 本章小结 |
4 基于群锚效应的支护参数设计优化 |
4.1 经典的群锚支护参数设计方法 |
4.2 支护参数优化设计步序 |
4.2.1 基于岩体地质力学特性优化 |
4.2.2 巷道空间位置优化 |
4.2.3 围岩与支护耦合作用优化 |
4.3 分类设计对策 |
4.3.1 软岩巷道群锚支护设计的五项依据 |
4.3.2 软岩巷道群锚支护设计的五大要素 |
4.3.3 基于软岩巷道分类的三种基本支护策略 |
4.4 本章小结 |
5 软岩巷道群锚支护优化方法应用 |
5.1 张集煤矿二水平水泵房主巷道地质条件 |
5.2 不同支护工况数值模拟 |
5.2.1 模型参数的确定 |
5.2.2 模型前处理流程 |
5.2.3 不同锚索埋置深度结果分析 |
5.2.4 不同锚索间排距结果分析 |
5.2.5 不同岩性条件下数值结果分析 |
5.2.6 不同地应力下数值结果分析 |
5.3 群锚作用支护方案 |
5.4 实施效果监测分析 |
5.4.1 围岩松动观测结果 |
5.4.2 表面收敛位移监测结果 |
5.5 本章小结 |
6 结论及展望 |
6.1 结论 |
6.2 展望 |
参考文献 |
致谢 |
作者简介及读研期间主要研究成果 |
(8)赵庄矿深部大断面复合顶板煤巷变形破坏机理与控制对策(论文提纲范文)
摘要 |
Abstract |
1 引言 |
1.1 问题的提出 |
1.2 国内外研究现状 |
1.2.1 复合顶板巷道变形破坏机理研究现状 |
1.2.2 煤巷锚杆支护理论研究现状 |
1.2.3 巷道围岩控制理论与技术研究现状 |
1.2.4 巷道断面优化研究现状 |
1.2.5 现存在主要问题 |
1.3 研究内容与研究方法 |
1.3.1 主要研究内容 |
1.3.2 研究方法与技术路线 |
2 巷道围岩地质力学测试与稳定性分类 |
2.1 工程地质特征 |
2.2 原岩应力分布特征 |
2.2.1 地应力测量步骤 |
2.2.2 地应力测试结果 |
2.3 围岩矿物成分含量测试 |
2.3.1 粘土矿物总量衍射分析实验 |
2.3.2 粘土矿物相对含量衍射分析实验 |
2.4 围岩力学参数测试 |
2.4.1 试件单轴压缩实验 |
2.4.2 试件劈裂实验 |
2.4.3 试件三轴压缩实验 |
2.5 围岩稳定性分类 |
2.5.1 分类指标的选取 |
2.5.2 分类指标权值的分配 |
2.5.3 围岩稳定性分类子模型 |
2.6 本章小结 |
3 大断面复合顶板煤巷变形破坏机理 |
3.1 大断面复合顶板煤巷变形破坏特征 |
3.1.1 巷道概况与支护方案 |
3.1.2 典型变形破坏特征 |
3.1.3 大断面煤巷复合顶板内部结构探测 |
3.2 大断面煤巷复合顶板离层演化规律 |
3.2.1 巷道宽度对复合顶板离层的影响 |
3.2.2 侧压系数对复合顶板离层的影响 |
3.2.3 不同分层厚度对复合顶板离层的影响 |
3.3 影响大断面复合顶板煤巷变形的主要因素分析 |
3.3.1 软弱夹层对巷道变形的影响 |
3.3.2 煤帮承载特性对巷道变形的影响 |
3.3.3 潮湿环境对巷道变形的影响 |
3.4 大断面复合顶板煤巷变形失稳机理 |
3.4.1 大断面复合顶板煤巷变形规律相似模拟试验 |
3.4.2 大断面复合顶板煤巷变形失稳分析 |
3.5 本章小结 |
4 大断面复合顶板煤巷断面形状优化分析 |
4.1 顶板内力公式推导 |
4.2 关键参数分析 |
4.2.1 顶板荷载 |
4.2.2 计算结果分析 |
4.3 巷道断面形状优化 |
4.3.1 巷道断面形状设计 |
4.3.2 巷道合理断面选择 |
4.4 本章小结 |
5 大断面复合顶板煤巷稳定性控制对策 |
5.1 复合顶板煤巷围岩控制思路 |
5.1.1 复合顶板煤巷支护存在的主要问题 |
5.1.2 复合顶板煤巷围岩控制思路 |
5.2 大断面复合顶板煤巷控制技术 |
5.2.1 支护应力场分布规律 |
5.2.2 描杆锚索对复合顶板结构面的加固作用 |
5.2.3 复合顶板煤巷大小结构叠加耦合支护技术 |
5.3 本章小结 |
6 现场工程试验 |
6.1 试验段巷道护方案 |
6.1.1 工程概况 |
6.1.2 支护方案 |
6.2 支护效果分析 |
6.2.1 矿压监测方案 |
6.2.2 支护效果分析 |
6.3 本章小结 |
7 结论与展望 |
7.1 主要结论 |
7.2 主要创新点 |
7.3 展望 |
参考文献 |
致谢 |
作者简介 |
(9)煤与瓦斯突出的关键结构体致灾机理(论文提纲范文)
摘要 |
Abstract |
1 绪论 |
1.1 选题背景及意义 |
1.2 国内外研究现状 |
1.2.1 煤与瓦斯突出概述 |
1.2.2 煤与瓦斯突出的机理假说 |
1.2.3 地质构造对突出控制作用 |
1.2.4 采动应力与瓦斯压力耦合作用 |
1.2.5 煤与瓦斯突出动力失稳判据 |
1.3 存在的问题 |
1.4 研究内容及技术路线 |
1.4.1 主要研究内容 |
1.4.2 思路与技术路线 |
2 煤与瓦斯突出危险区地质结构环境特征 |
2.1 突出矿区分布及其地质背景 |
2.2 突出矿区原岩应力场分布特征 |
2.2.1 地应力场分布的一般规律 |
2.2.2 突出矿区原岩应力场分布规律 |
2.3 突出位置的特殊地质结构环境 |
2.4 突出煤体的宏细观结构特征 |
2.5 本章小结 |
3 煤与瓦斯突出煤体的基本物理力学性质 |
3.1 突出煤体物性特征参数分析 |
3.1.1 工业分析 |
3.1.2 吸附常数 |
3.1.3 瓦斯放散初速度 |
3.1.4 微观孔隙结构特征 |
3.2 突出煤体的瓦斯解吸动力学特性 |
3.2.1 实验方法 |
3.2.2 解吸速率时变特征 |
3.2.3 累积解吸量变化特征 |
3.2.4 解吸曲线的数学表达式 |
3.3 突出煤体受载损伤破坏及力学行为特性 |
3.3.1 试验煤样的制备和试验系统简介 |
3.3.2 单轴试验下声发射行为时空演化特征 |
3.3.3 三轴试验突出煤体声发射行为特征 |
3.3.4 突出煤体破坏过程的本构关系分析 |
3.4 本章小结 |
4 采掘面采动应力与瓦斯压力场互馈作用机制 |
4.1 煤的双重孔隙介质模型及基本特性 |
4.1.1 煤的双重孔隙介质模型 |
4.1.2 游离瓦斯有效应力效应 |
4.1.3 吸附瓦斯膨胀变形效应 |
4.2 双重孔隙结构煤体瓦斯运移控制方程 |
4.2.1 基质瓦斯扩散控制方程 |
4.2.2 裂隙瓦斯渗流控制方程 |
4.3 双重孔隙结构煤体的渗透率演化模型 |
4.3.1 弹性阶段渗透率演化模型 |
4.3.2 考虑塑性破坏的渗透率模型 |
4.4 采掘扰动条件下含瓦斯煤气固耦合控制方程组 |
4.4.1 含瓦斯煤体的本构方程与其屈服准则 |
4.4.2 采掘扰动条件下含瓦斯煤气固耦合方程 |
4.4.3 方程组的定解条件 |
4.5 煤体中气固耦合互馈作用过程的数值模拟分析 |
4.5.1 数值试验方法及模型构建 |
4.5.2 采掘面前方煤体瓦斯压力场分布特征 |
4.5.3 煤的吸附性能对瓦斯压力场分布的影响 |
4.5.4 煤的透气性能对瓦斯压力场分布的影响 |
4.6 本章小结 |
5 采掘面过典型地质结构异常区孕灾过程分析 |
5.1 不同原岩应力条件下采动应力场演化特征 |
5.2 过硬软煤岩变化带时采动应力场演化特征 |
5.3 过煤层厚度变化带时采动应力场演化特征 |
5.3.1 煤层变厚时的采动应力场演化规律 |
5.3.2 煤层变薄时的采动应力场演化规律 |
5.4 采掘面过褶曲构造时采动应力场演化特征 |
5.4.1 过向斜过程中采动应力场演化规律 |
5.4.2 过背斜过程中采动应力场演化规律 |
5.5 采掘面过断层构造时采动应力场演化特征 |
5.5.1 数值模型构建及模拟方案 |
5.5.2 断层附近原岩应力场分布特征 |
5.5.3 采掘面过断层时采动应力场演化规律 |
5.6 采掘面过典型地质结构异常区孕灾过程 |
5.6.1 采动成因异常结构孕灾规律定性分析 |
5.6.2 天然成因异常地质结构孕灾规律分析 |
5.7 本章小结 |
6 煤与瓦斯突出关键结构体模型及致灾理论 |
6.1 煤与瓦斯突出关键结构体致灾机理 |
6.1.1 煤与瓦斯突出工程结构模型 |
6.1.2 典型煤与瓦斯突出科学分类 |
6.1.3 煤与瓦斯突出演化过程描述 |
6.1.4 煤与瓦斯突出激发条件分析 |
6.1.5 煤与瓦斯突出启动力能判据 |
6.2 煤与瓦斯突出物理模拟验证性试验 |
6.2.1 煤与瓦斯突出模拟试验系统 |
6.2.2 煤与瓦斯突出模拟试验方案 |
6.2.3 煤与瓦斯突出模拟试验结果 |
6.3 基于KSBT的煤与瓦斯突出案例分析 |
6.3.1 中梁山煤矿南井突出监测实验分析 |
6.3.2 平煤股份十三矿“8·16”突出事故分析 |
6.4 关键结构体致灾理论的核心思想 |
6.5 本章小结 |
7 关键结构体致灾机理工程应用研究 |
7.1 在突出危险区超前探测工作方面 |
7.2 在煤与瓦斯突出危险性预测方面 |
7.2.1 对煤层突出倾向性评价的启示 |
7.2.2 对突出危险性预测方法的启示 |
7.2.3 对突出预测敏感指标确定的启示 |
7.3 在煤与瓦斯突出危险监测预警方面 |
7.4 在煤与瓦斯突出灾害综合治理方面 |
7.4.1 低渗突出煤层增透的概念模型 |
7.4.2 卸荷消能与介质属性改造协同防突原理 |
7.5 本章小结 |
8 全文总结与研究展望 |
8.1 论文主要结论 |
8.2 论文主要创新点 |
8.3 进一步研究展望 |
参考文献 |
致谢 |
作者简介 |
(10)淮南矿区深部煤巷变形破坏机制及支护技术(论文提纲范文)
1 工程地质概况 |
1.1 地质构造 |
1.2 地应力 |
1.3 围岩岩性 |
2 深部煤巷围岩变形破坏机制 |
2.1 帮部变形破坏机制 |
2.2 底板变形破坏机制 |
2.3 顶板变形破坏机制 |
3 深部煤巷支护技术 |
3.1 深部煤巷支护方法 |
3.2“地质-矿压”信息动态支护设计方法 |
3.3 支护质量控制体系 |
4 工程实例 |
4.1 工程概况 |
4.2 动态优化支护 |
4.3 支护效果 |
5 结论 |
四、淮南矿区煤巷稳定性分类及工程对策(论文参考文献)
- [1]淮南潘集矿区深部煤系岩石力学性质及其控制因素研究[D]. 沈书豪. 安徽理工大学, 2020(07)
- [2]潘二煤矿18224工作面回采巷道围岩稳定性分析与支护技术研究[D]. 任中发. 安徽理工大学, 2020(07)
- [3]深部巷道煤岩复合顶板厚层跨界锚固承载机制研究[D]. 谢正正. 中国矿业大学, 2020
- [4]千米深井巷道围岩支护—改性—卸压协同控制原理及技术[D]. 姜鹏飞. 煤炭科学研究总院, 2020(08)
- [5]高应力软岩巷道锚杆支护优化及工程应用研究[D]. 陶文斌. 北京交通大学, 2020(06)
- [6]赵庄矿综掘煤巷复合顶板稳定机制与安全控制技术[D]. 赵明洲. 中国矿业大学(北京), 2020(01)
- [7]淮南矿区千米深井大断面软岩巷道群锚支护机理研究[D]. 钱立德. 安徽理工大学, 2019(01)
- [8]赵庄矿深部大断面复合顶板煤巷变形破坏机理与控制对策[D]. 王茂盛. 中国矿业大学(北京), 2019(12)
- [9]煤与瓦斯突出的关键结构体致灾机理[D]. 舒龙勇. 中国矿业大学(北京), 2019(12)
- [10]淮南矿区深部煤巷变形破坏机制及支护技术[J]. 李琰庆,王传兵,杨永刚,张元豹. 煤炭工程, 2018(10)