论文摘要
讨论带约束的双调和方程■,其中Ω是RN(N>4)的一个具有光滑边界的有界区域,利用变分方法证明了非线性项在某些适当假设下存在两个解,一个是正解,一个是负解。
论文目录
文章来源
类型: 期刊论文
作者: 闫姣
关键词: 双调和方程,约束临界点,正负解,强极值原理
来源: 咸阳师范学院学报 2019年06期
年度: 2019
分类: 社会科学Ⅱ辑,基础科学
专业: 数学
单位: 福建师范大学数学与信息学院
分类号: O175.8
页码: 19-23
总页数: 5
文件大小: 1521K
下载量: 20
相关论文文献
- [1].On a Critical Fourth Order PDE with Navier Boundary Condition[J]. Acta Mathematica Sinica 2019(12)
- [2].Weighted polyharmonic equation with Navier boundary conditions in a half space[J]. Science China(Mathematics) 2017(03)
- [3].Global Well-Posedness of Incompressible Navier-Stokes Equations with Two Slow Variables[J]. Chinese Annals of Mathematics,Series B 2017(03)
- [4].谱松弛法研究时变Darcy-Forchheimer流体的Navier滑动条件(英文)[J]. Journal of Central South University 2019(07)
- [5].关于Navier-Stokes-Voight方程精确解的相关探究[J]. 淮北师范大学学报(自然科学版) 2017(02)
- [6].带有非线性项不可压Navier-Stokes方程整体性吸引子的存在性(英文)[J]. 数学季刊(英文版) 2020(01)
- [7].四阶变指数椭圆方程Navier边值问题的多解性[J]. 山东大学学报(理学版) 2018(02)
- [8].Global Strong Solutions of the Cauchy Problem for 1D Compressible Navier-Stokes Equations with Density-dependent Viscosity[J]. Acta Mathematicae Applicatae Sinica 2017(01)
- [9].Asymptotic Behaviour of Solutions to the Navier-stokes Equations of a Two-dimensional Compressible Flow[J]. Acta Mathematicae Applicatae Sinica(English Series) 2011(04)
- [10].横观各向同性功能梯度板的热弹性Navier解[J]. 强度与环境 2020(04)
- [11].三维Navier-Stokes方程具有两个分量的对数准则[J]. 佳木斯大学学报(自然科学版) 2017(01)
- [12].可压缩流体Navier-Slip边界条件问题解的存在性研究[J]. 上海理工大学学报 2017(01)
- [13].基于Navier滑移的油膜缝隙微流动特性数值分析[J]. 机械工程学报 2011(21)
- [14].基于Navier滑移模型的聚合物挤出成型有限元模拟[J]. 青岛科技大学学报(自然科学版) 2014(05)
- [15].PROPERTIES OF SOLUTIONS OF n-DIMENSIONAL INCOMPRESSIBLE NAVIER-STOKES EQUATIONS[J]. Annals of Applied Mathematics 2019(04)
- [16].Dimension Splitting Method for the Three Dimensional Rotating Navier-Stokes Equations[J]. Acta Mathematicae Applicatae Sinica(English Series) 2012(03)
- [17].Global Attractors and Determining Modes for the 3D Navier-Stokes-Voight Equations[J]. Chinese Annals of Mathematics 2009(06)
- [18].The Asymptotic Attractor of the Damped Navier-Stokes System[J]. Journal of Mathematical Research with Applications 2020(03)
- [19].Asymptotic Behavior of the Incompressible Navier-Stokes Fluid with Degree of Freedom in Porous Medium[J]. Chinese Annals of Mathematics,Series B 2016(06)
- [20].一类p(x)-双调和方程Navier边值问题解的多重性[J]. 吉林大学学报(理学版) 2017(04)
- [21].二维广义Navier-stokes方程弱解的存在性和唯一性[J]. 景德镇高专学报 2012(06)
- [22].关于Navier-Stokes-Voight 方程的若干探究[J]. 安徽大学学报(自然科学版) 2020(02)
- [23].Remark on the Lifespan of Solutions to 3-D Anisotropic Navier Stokes Equations[J]. Communications in Mathematical Research 2020(01)
- [24].Navier-Stokes-Fourier方程的可压逼近[J]. 数学物理学报 2017(06)
- [25].An h-adaptive Discontinuous Galerkin Method for Laminar Compressible Navier-Stokes Equations on Curved Mesh[J]. Transactions of Nanjing University of Aeronautics and Astronautics 2016(05)
- [26].Central Discontinuous Galerkin Method for the Navier-Stokes Equations[J]. Journal of Beijing Institute of Technology 2017(02)
- [27].Global Mild Solution of Stochastic Generalized Navier–Stokes Equations with Coriolis Force[J]. Acta Mathematica Sinica 2018(11)
- [28].可压Navier-Stokes-Korteweg方程组强稀疏波的稳定性[J]. 厦门理工学院学报 2014(05)
- [29].Zero Dissipation Limit to Rarefaction Waves for the 1-D Compressible Navier-Stokes Equations[J]. Chinese Annals of Mathematics(Series B) 2012(03)
- [30].Boundary Shape Control of the Navier-Stokes Equations and Applications[J]. Chinese Annals of Mathematics(Series B) 2010(06)