论文摘要
本文构建几类不满足莱布尼茨判别法条件但仍收敛的交错级数.
论文目录
文章来源
类型: 期刊论文
作者: 黄琼伟,薛长峰
关键词: 交错级数,莱布尼茨判别法,收敛,单调递减
来源: 高等数学研究 2019年03期
年度: 2019
分类: 基础科学
专业: 数学
单位: 盐城工学院数理学院
基金: 盐城工学院教学改革研究规划项目(JY2015B43)
分类号: O173.1
页码: 10-12
总页数: 3
文件大小: 610K
下载量: 286
相关论文文献
- [1].p-重交错级数的收敛性及应用[J]. 高师理科学刊 2015(11)
- [2].浅谈交错级数的莱布尼兹判别法的局限性[J]. 数学学习与研究 2017(17)
- [3].关于等间距交错级数的审敛法与求和法[J]. 赤峰学院学报(自然科学版) 2011(03)
- [4].含参数型交错级数的收敛性及应用[J]. 高师理科学刊 2019(06)
- [5].多项交错级数敛散性的判定方法[J]. 陕西科技大学学报(自然科学版) 2013(02)
- [6].一个发散的交错级数[J]. 高等数学研究 2012(03)
- [7].双项交错级数敛散性的判定[J]. 衡水学院学报 2008(01)
- [8].明安图对交错级数的表述及处理[J]. 西北大学学报(自然科学版) 2019(05)
- [9].一类交错级数∑(-1)~nu_n发散的简易判别方法[J]. 考试周刊 2012(61)
- [10].一类交错级数的敛散性判定[J]. 高师理科学刊 2010(04)
- [11].关于交错级数的一个审敛准则[J]. 渤海大学学报(自然科学版) 2011(01)
- [12].富里叶级数的收敛速度[J]. 数学的实践与认识 2020(08)
- [13].求一个典型的交错级数的和[J]. 考试周刊 2014(82)
- [14].正项级数对数判别法的一种推广形式[J]. 高师理科学刊 2019(11)
- [15].级数收敛性的判别法[J]. 课程教育研究 2019(26)
- [16].交错级数收敛准则的探讨及应用[J]. 科技视界 2016(25)
- [17].交错级数敛散性的微分形式判别法[J]. 高等数学研究 2010(03)
- [18].交错级数的一种审敛方法[J]. 中国城市经济 2010(12)
- [19].一种交错级数最小误差范围的余项估计[J]. 淮阴工学院学报 2009(01)
- [20].负m次幂函数与排列数的交错级数型线性微分方程[J]. 天水师范学院学报 2015(05)
- [21].含幂与二项式系数的交错级数型常系数线性微分方程[J]. 荆楚理工学院学报 2010(11)
- [22].交错级数的实质是无穷项n到2n的调和级数[J]. 数学学习与研究 2014(01)
- [23].交错级数比较和比值判别法探讨[J]. 陕西科技大学学报(自然科学版) 2011(06)
- [24].一个不满足莱布尼茨定理条件的交错级数收敛的判定[J]. 宜宾学院学报 2011(12)
- [25].关于交错级数审敛法[J]. 教育教学论坛 2013(11)
- [26].一类交错级数的审敛法[J]. 赤峰学院学报(自然科学版) 2013(15)
- [27].交错级数收敛性的几个结果及其应用[J]. 高等数学研究 2009(03)
- [28].交错级数收敛性的两个补充判别法[J]. 红河学院学报 2008(02)
- [29].数频级数之调和级数收敛[J]. 数学学习与研究 2014(11)
- [30].交错级数之和的估计公式[J]. 高等数学研究 2013(04)