导读:本文包含了级联与嵌套论文开题报告文献综述、选题提纲参考文献及外文文献翻译,主要关键词:嵌套,特征,级联,尺度,在线,直方图,梯度。
级联与嵌套论文文献综述
康佩佩,于凤芹,陈莹[1](2018)在《基于多尺度特征和嵌套级联Adaboost的车辆检测》一文中研究指出为提高车辆检测的速度和准确性,提出了一种基于多尺度方向梯度直方图(HOG)和多尺度多块局部二进制模式(MB-LBP)两种特征与嵌套级联Gentle Adaboost的车辆检测算法。分别使用积分直方图和积分图像加速提取多尺度HOG和多尺度MB-LBP特征。基于两种特征为Gentle Adaboost构建两种弱分类器,并采用嵌套级联Gentle Adaboost分类器提高检测率和检测速度。仿真实验结果表明:相比于现有的几种车辆检测算法,提出的算法检测速度更快,且检测精度和召回率更高。(本文来源于《传感器与微系统》期刊2018年05期)
蔡灿辉,朱建清[2](2013)在《采用Gentle AdaBoost和嵌套级联结构的实时人脸检测》一文中研究指出本文提出一个基于Gentle AdaBoost和嵌套级联结构(Nesting Cascade Structure)的快速人脸检测器。采用嵌套级联结构并在训练过程中剔除前级节点分类器已使用过的特征,解决了经典的AdaBoost级联分类器因各节点分类器独立训练导致不同节点之间特征相同的弱分类器大量存在而影响检测速度的问题,提高了人脸检测速度。采用Gentle AdaBoost算法训练节点分类器以提高各节点分类器的泛化能力,进一步减少嵌套级联结构中弱分类器的个数。实验结果表明本文所提出的人脸检测算法大幅度减少了级联分类器所需的弱分类器个数,使检测的速度得到明显的提高,在CIF(352×288)格式的视频上达到每帧8毫秒的检测速度,优于现有的人脸检测算法,而且检测的准确性也比现有的人脸检测算法略有提高。(本文来源于《信号处理》期刊2013年08期)
游生福,汪荣贵,戴经成,张冬梅[3](2014)在《自适应嵌套级联的在线集成学习方法研究》一文中研究指出针对视频目标检测问题,提出一种新的在线集成学习方法。该方法把目标检测看成两类分类问题,首先用少量已标注样本离线训练一个初始集成分类器,然后在检测目标的同时通过跟踪过滤虚警目标,并通过样本置信度作进一步验证自动标注样本,最后通过在线集成学习方法更新级联分类器。该方法通过在线调整级联分类器,提高分类器对目标环境变化的适应能力,在大量视频序列上进行实验验证,并与现有在线集成学习方法进行比较,结果表明,通过该方法训练得到的检测器不但能够很好地应对目标特征的变化,也能在出现目标遮挡及背景干扰下稳定地检测出目标,具有较好的适应性及鲁棒性。(本文来源于《计算机工程与应用》期刊2014年05期)
级联与嵌套论文开题报告
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文提出一个基于Gentle AdaBoost和嵌套级联结构(Nesting Cascade Structure)的快速人脸检测器。采用嵌套级联结构并在训练过程中剔除前级节点分类器已使用过的特征,解决了经典的AdaBoost级联分类器因各节点分类器独立训练导致不同节点之间特征相同的弱分类器大量存在而影响检测速度的问题,提高了人脸检测速度。采用Gentle AdaBoost算法训练节点分类器以提高各节点分类器的泛化能力,进一步减少嵌套级联结构中弱分类器的个数。实验结果表明本文所提出的人脸检测算法大幅度减少了级联分类器所需的弱分类器个数,使检测的速度得到明显的提高,在CIF(352×288)格式的视频上达到每帧8毫秒的检测速度,优于现有的人脸检测算法,而且检测的准确性也比现有的人脸检测算法略有提高。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
级联与嵌套论文参考文献
[1].康佩佩,于凤芹,陈莹.基于多尺度特征和嵌套级联Adaboost的车辆检测[J].传感器与微系统.2018
[2].蔡灿辉,朱建清.采用GentleAdaBoost和嵌套级联结构的实时人脸检测[J].信号处理.2013
[3].游生福,汪荣贵,戴经成,张冬梅.自适应嵌套级联的在线集成学习方法研究[J].计算机工程与应用.2014