导读:本文包含了交通流预测论文开题报告文献综述、选题提纲参考文献及外文文献翻译,主要关键词:通流,序列,模型,智能交通,时间,小波,张量。
交通流预测论文文献综述
刘学刚,张腾飞,韩印[1](2019)在《基于ARIMA模型的短时交通流预测研究》一文中研究指出高效利用短时交通流数据进行预测,建立合理的预测模型对于有效缓解交通拥挤问题十分必要。首先获取时间序列数据,判断序列的平稳性,然后用Eviews软件对时间序列数据构建ARIMA誗6,1,6誗模型,通过最小二乘估计法进行参数估计,并对残差检验是否为白噪声数据,对该ARIMA模型进行交通量的静态预测,最后对预测结果做出评价,结果显示拟合效果较好,表明ARIMA模型在短时交易量预测时有很大的应用价值。(本文来源于《物流科技》期刊2019年12期)
钟晨昊,王蒙,赵威,张亚楠[2](2019)在《基于LSTM的平面交叉口短时交通流预测》一文中研究指出针对平面交叉口四方向进口的交通流量具有时空相关性的特点,提出了一种基于长短期记忆LSTM(Long Short-Term Memory)网络的平面交叉口短时交通流预测模型。将以四方向进口历史交通流数据为基础的四维时间序列数据输入LSTM模型中进行训练,并使用OpenITS合肥示范区数据对提出的模型进行验证。结果表明,与传统的BP神经网络相比,该方法预测效果具有更好的表现,是一种预测精度高的预测方法。(本文来源于《公路交通技术》期刊2019年05期)
李明明,雷菊阳,赵从健[3](2019)在《基于LSTM-BP组合模型的短时交通流预测》一文中研究指出为减轻日益严重的交通拥堵问题,实现智能交通管控,给交通流诱导和交通出行提供准确实时的交通流预测数据,设计了基于长短时记忆神经网络(LSTM)和BP神经网络结合的LSTM-BP组合模型算法.挖掘已知交通流数据的特征因子,建立时间序列预测模型框架,借助Matlab完成从数据的处理到模型的仿真,实现基于LSTMBP的短时交通流精确预测.通过与LSTMBPWNN叁种预测网络模型的对比,结果表明LSTM-BP预测的时间序列具有较高的精度和稳定性.该模型的搭建,可对交通分布的预测、交通方式的划分、实时交通流的分配提供依据和参考.(本文来源于《计算机系统应用》期刊2019年10期)
吕田[4](2019)在《基于SDZ-GRU的多特征短时交通流预测方法》一文中研究指出针对当前短期交通流量预测方法误差较大,且仅依靠时间序列数据进行预测的问题,提出一种基于SDZ-GRU的多特征短时交通流预测方法(简称SGMTFP)。该方法在现有的时序数据的基础上加入时间信息等一系列辅助数据,并将SDZ(Surprisal-Driven Zoneout)应用于门控循环单元(Gated Recurrent Unit, GRU)构成新的RNN单元SDZ-GRU。通过滚动式嵌套交叉验证实验,本文方法在均方根误差与平均绝对误差上比常规的GRU分别下降了7.68%和14.55%;另外由于SGMTFP方法加入了辅助特征,相比较不使用辅助特征的情况下,均方根误差与平均绝对误差分别下降了10.9%和15.1%,实验结果表明,本文方法能有效减小误差。(本文来源于《计算机与现代化》期刊2019年10期)
何领朝,林东,冯心欣[5](2019)在《基于自适应秩动态张量分析的短时交通流预测》一文中研究指出在智能交通系统中,短时交通流预测可以为路线规划、交通管理和公共安全等领域提供数据支撑。为了提高数据缺失和异常情况下的预测准确性,提出了一种基于自适应秩动态张量分析的算法来进行短时交通流预测。首先构造了覆盖周、天、时间窗口和空间4个维度的张量,以挖掘交通流数据之间的多模相关性。其次,利用滑动窗口模型,形成动态结构的张量流数据。然后将主成分分析算法扩展成可以接收张量输入的离线张量分析算法,并引入自适应秩和遗忘因子形成自适应秩动态张量分析算法。最后将张量流数据输入自适应秩动态张量分析算法中,实现对短时交通流数据的预测。实验结果显示,即使在数据有缺失的情况下,自适应秩动态张量分析算法也能实现良好的预测。(本文来源于《物联网学报》期刊2019年03期)
殷礼胜,唐圣期,李胜,何怡刚[6](2019)在《基于整合移动平均自回归和遗传粒子群优化小波神经网络组合模型的交通流预测》一文中研究指出针对短时交通流数据的非线性和随机性特点,为提高它的预测精度和收敛速度,该文从模型构建和算法两方面提出一种整合移动平均自回归(ARIMA)模型和遗传粒子群算法优化小波神经网络(GPSOWNN)相结合的预测模型和算法。在模型构建方面,将ARIMA模型预测值和灰色关联系数大于0.6的相关性强的前3个时刻的历史数据作为小波神经网络(WNN)的输入,在兼顾历史数据的平稳和非平稳的情况下,进行了模型结构简化。在算法方面,通过遗传粒子群算法对小波神经网络的参数初始值进行最优选取,可使其结果在不易陷入局部最优的条件下加快网络训练收敛速度。实验结果表明,在预测精度方面,该方法的模型明显优于整合移动平均自回归模型和遗传粒子群算法优化小波神经网络,在收敛速度方面,用遗传粒子群算法优化模型明显优于仅用遗传算法优化模型。(本文来源于《电子与信息学报》期刊2019年09期)
倪慧荟,吴波鸿[7](2019)在《面向视频智能分析的商业街行人交通流预测建模》一文中研究指出阐述了利用面向视频智能分析技术,对商业区行人交通流数据进行样本提取、预处理和建模分析的方法全过程。以北京西单商业区为例,构建了包含不同类型监测点、不同时间点的日期分组式纵向时间序列,并完成了预测建模和效果对比。研究表明,所有序列均为平稳非白噪声序列,具有相似的自回归移动平均(ARMA)模型形式,能较好地实现对行人流量的预测。(本文来源于《科技导报》期刊2019年16期)
周海赟,闫冬梅[8](2019)在《基于SSARX-NARX模型的短时交通流预测》一文中研究指出为了提高短时交通流的预测精度,向出行者提供更加准确可靠的道路交通信息,在充分考虑交通系统非线性特征的基础上,提出了基于SSARX-NARX的短时交通流预测模型。该模型以NARX作为短时交通流预测基础模型,采用SSARX方法建立了短时交通流预测状态空间模型并估计了模型参数,然后将估计出的状态空间模型的系统阶次和马尔科夫参数的值分别作为NARX基础预测模型线性部分的初始参数值,优化后构造了SSARX-NARX预测模型。利用PeMS数据库的交通流数据,验证了SSARX-NARX模型的预测性能,比较了SSARX-NARX模型与SSARX模型的预测精度。结果表明,SSARX-NARX模型可以实现1步和多步短时交通流预测,并且针对5步和10步短时交通流预测,SSARX-NARX模型的MAPE值分别比SSARX模型小0.76%和2.4%,而针对1步交通流预测,SSARX-NARX模型的MAPE值比SSARX模型大0.13%,但相差不大。(本文来源于《交通信息与安全》期刊2019年04期)
赵宏,翟冬梅,石朝辉[9](2019)在《短时交通流预测模型综述》一文中研究指出介绍短时交通流预测的背景和意义,将短时交通流预测的方法分为5类,包括基于统计分析的预测模型、非线性理论模型、基于仿真的预测模型、智能预测模型及混合预测模型。对这5类预测模型进行逐一介绍,并对其在算法复杂度、预测精度、计算时长、适用路段等方面进行分析。短时交通流预测研究领域今后可能的发展趋势是数据来源多样化、混沌理论和深度学习逐渐发展,组合预测模型更加多样,预测精度不断提高。(本文来源于《都市快轨交通》期刊2019年04期)
万玉龙,李新春,周红标[10](2019)在《基于WPD-PSO-ESN的短期交通流预测》一文中研究指出为了提高短期交通流的预测精度,提出了一种基于小波包分解(wavelet packet decomposition, WPD)、粒子群优化(particle swarm optimization, PSO)算法和回声状态网(echo state network, ESN)的短期交通流预测方法。该方法命名为WPD-PSO-ESN。首先,在数据预处理阶段,采用小波包分解将交通流数据分解为不同频段的子序列,并将各子序列送入回声状态网预测模型;然后,在建立预测模型阶段,利用粒子群优化算法在线优化回声状态网的参数,以提高回声状态网的泛化能力和预测精度;进一步,针对粒子群优化算法存在的早熟收敛和易陷入局部最优的缺陷,通过检测粒子飞行过程中的状态信息,设计了惯性权重自适应调整策略,以期提高粒子群优化算法的寻优能力;最后,在结果输出阶段,采用加权平均法融合各子序列的预测值以得到模型的最终预测结果。试验结果表明:通过小波包分解和单支重构可以更加容易地抓住原始信号中的动态信息,更适合用于回声状态网的时间序列建模;带有自适应惯性权重调整策略的粒子群优化算法具备更强的跳出局部最优的能力,优化后的回声状态网模型精度更高;对于短期交通流预测,与前馈型误差反传神经网络、反馈型Elman神经网络和传统回声状态网等预测方法相比,WPD-PSO-ESN预测方法具有更高的预测精度,能够满足智能交通系统对预测精度的需求,对实现实时交通控制和建设智能交通系统具有重要意义。(本文来源于《公路交通科技》期刊2019年08期)
交通流预测论文开题报告
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
针对平面交叉口四方向进口的交通流量具有时空相关性的特点,提出了一种基于长短期记忆LSTM(Long Short-Term Memory)网络的平面交叉口短时交通流预测模型。将以四方向进口历史交通流数据为基础的四维时间序列数据输入LSTM模型中进行训练,并使用OpenITS合肥示范区数据对提出的模型进行验证。结果表明,与传统的BP神经网络相比,该方法预测效果具有更好的表现,是一种预测精度高的预测方法。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
交通流预测论文参考文献
[1].刘学刚,张腾飞,韩印.基于ARIMA模型的短时交通流预测研究[J].物流科技.2019
[2].钟晨昊,王蒙,赵威,张亚楠.基于LSTM的平面交叉口短时交通流预测[J].公路交通技术.2019
[3].李明明,雷菊阳,赵从健.基于LSTM-BP组合模型的短时交通流预测[J].计算机系统应用.2019
[4].吕田.基于SDZ-GRU的多特征短时交通流预测方法[J].计算机与现代化.2019
[5].何领朝,林东,冯心欣.基于自适应秩动态张量分析的短时交通流预测[J].物联网学报.2019
[6].殷礼胜,唐圣期,李胜,何怡刚.基于整合移动平均自回归和遗传粒子群优化小波神经网络组合模型的交通流预测[J].电子与信息学报.2019
[7].倪慧荟,吴波鸿.面向视频智能分析的商业街行人交通流预测建模[J].科技导报.2019
[8].周海赟,闫冬梅.基于SSARX-NARX模型的短时交通流预测[J].交通信息与安全.2019
[9].赵宏,翟冬梅,石朝辉.短时交通流预测模型综述[J].都市快轨交通.2019
[10].万玉龙,李新春,周红标.基于WPD-PSO-ESN的短期交通流预测[J].公路交通科技.2019