若干流体力学方程解的长时间动力学行为研究

若干流体力学方程解的长时间动力学行为研究

论文摘要

Navier-Stokes方程组是刻画粘性不可压流体运动的一个简化方程,也是反映力学规律的最具代表性的非线性方程组,它在很多领域有着广泛的应用。而很多的流体运动模型都可看做是Navier-Stokes方程组和其它方程的耦合方程组。对三维Navier-Stokes方程组解的适定性及动力系统的研究一直是学界的研究热点之一,相应的吸引子理论方面取得的成果对于研究湍流有着重要意义,它对天气预报、航海运输、材料、飞机船舶设计等行业有着很大的指导意义。本文研究了几类含时滞的流体方程组吸引子的存在性及分形维度估计,包括二维含分布时滞的 Navier-Stokes-Voight方程组,三维含连续时滞的 Kelvin-Voight-Brinkman-Forchheimer方程组和三维带增长阻尼的Navier-Stokes方程组,得出了一些有意义的结论。研究成果如下:(1)在Lipschitz区域内,研究了二维含分布时滞的Navier-Stokes-Voight方程组的整体吸引子的存在性问题。在对分布时滞项∫-h0 G(s,u(t+s)ds及初值的假设条件下,通过构造流函数,将系统转化为齐次系统,运用标准Faedo-Galerkin逼近方法、紧性定理、嵌入定理、Sobolev不等式以及Hardy不等式等,得到了系统解的整体适定性;通过分解技巧验证了半群{S(t)}的渐近紧性,进而得出了系统在空间CV中整体吸引子的存在性。(2)在有界光滑区域内,研究了二维含分布时滞的Navier-Stokes-Voight方程组整体吸引子的存在性及分形维度的估计问题。利用流函数将方程组转化为齐次边界问题,运用标准Faedo-Galerkin逼近方法、紧性定理及Gagliardo-Nirenberg不等式等,建立了该方程组整体解的适定性;运用半群{S(t)}的分解技巧,证明了该系统在乘积空间XV中整体吸引子是存在的;通过求解一阶变分方程,证明了半群{S(t)}在吸引子内的一致可微性;最后,将演化系统的生成算子进行延拓,利用Lieb-Thirring不等式等对整体吸引子分形维度进行了估计。(3)在有界光滑区域内,研究了三维含连续时滞的Kelvin-Voight-Brinkman-Forchheimer方程组拉回-D吸引子的存在性问题。在对含时滞外力项f(t,u(t-ρ(t)))适当的假设条件下,通过逼近方法,Gronwall不等式和紧性定理得出了解的适定性;通过能量方法和分解方法推出了系统拉回-D吸收球的存在性及过程的渐近紧性,最后得到了拉回-D吸引子。(4)在有界光滑区域内,研究了三维带增长阻尼α|u|β-1u的Navier-Stokes方程组吸引子的上半连续性。在对带扰动外力项的适当假设下,利用Sobolev不等式及Gronwall不等式等导出了拉回吸收集及拉回吸引子的存在性。最后利用上半连续的基本理论,验证了拉回吸引子Aε(t)={Aε(t)}t∈R和ε=0情形下系统的整体吸引子满足上半连续性。

论文目录

  • 摘要
  • ABSTRACT
  • 第一章 绪论
  •   1.1 研究进展
  •   1.2 本文工作
  •   1.3 常用定理及结论
  • 第二章 非光滑区域上含时滞Navier-Stokes-Voight方程组的整体吸引子
  •   2.1 研究模型
  •   2.2 整体吸引子的相关定义
  •   2.3 系统解的适定性
  •   2.4 吸收集的存在性
  •   2.5 半群的渐近紧性
  •   2.6 整体吸引子的存在性
  •   2.7 小结
  • 第三章 含时滞Navier-Stokes-Voight方程组整体吸引子的分形维度估计
  •   3.1 研究模型
  •   3.2 系统解的适定性
  •   3.3 吸收集的存在性
  •   3.4 半群的渐近紧性及整体吸引子的存在性
  •   3.5 整体吸引子的分形维度估计
  •   3.6 小结
  • 第四章 含时滞Kelvin-Voight-Brinkman-Forchheimer方程组的拉回-D吸引子
  •   4.1 研究模型
  •   4.2 拉回-D吸引子的定义及相关定理
  •   4.3 系统解的适定性
  •   4.4 拉回-D吸收球的存在性
  •   4.5 拉回-D渐近紧性及吸引子的存在性
  •   4.6 小结
  • 第五章 带增长阻尼的Navier-Stokes方程组吸引子的上半连续性
  •   5.1 研究模型
  •   5.2 基本定义及定理
  •   5.3 系统解的适定性
  •   5.4 解的估计及吸引子的存在性
  •   5.5 吸引子的上半连续性
  •   5.6 小结
  • 第六章 总结和展望
  • 参考文献
  • 攻读博士学位期间发表的论文
  • 攻读博士学位期间参加的科研项目
  • 致谢
  • 文章来源

    类型: 博士论文

    作者: 苏克勤

    导师: 秦玉明

    关键词: 方程组,时滞,吸引子,分形维度,上半连续

    来源: 东华大学

    年度: 2019

    分类: 基础科学

    专业: 力学

    单位: 东华大学

    分类号: O35

    DOI: 10.27012/d.cnki.gdhuu.2019.000032

    总页数: 108

    文件大小: 2767K

    下载量: 60

    相关论文文献

    • [1].非自治基尔霍夫型吊桥方程拉回吸引子的存在性[J]. 兰州文理学院学报(自然科学版) 2020(01)
    • [2].带加性噪声和线性记忆的可拉伸吊桥方程的随机吸引子[J]. 吉林大学学报(理学版) 2020(02)
    • [3].具有多种吸引子共存类型的新型四维混沌系统[J]. 华南理工大学学报(自然科学版) 2020(03)
    • [4].一类具有非线性kirchhoff-sine-Gordon广义方程的整体吸引子的存在性[J]. 数学的实践与认识 2020(08)
    • [5].金兹堡-朗道方程组的整体吸引子[J]. 闽南师范大学学报(自然科学版) 2020(02)
    • [6].可拉伸梁方程一致紧吸引子的存在性[J]. 汕头大学学报(自然科学版) 2016(04)
    • [7].非线性可拉伸梁方程的指数吸引子[J]. 吉林大学学报(理学版) 2017(04)
    • [8].耦合吊桥方程指数吸引子的存在性[J]. 西南大学学报(自然科学版) 2017(09)
    • [9].非自治Kuramoto-Sivashinsky方程一致吸引子的存在性、一致有界性和收敛性[J]. 华中师范大学学报(自然科学版) 2016(02)
    • [10].非线性梁方程的渐近吸引子[J]. 数学的实践与认识 2015(02)
    • [11].带有导数项的反应扩散方程指数吸引子存在性的一个注解[J]. 兰州文理学院学报(自然科学版) 2015(06)
    • [12].具有乘法白噪音的Kuramoto-Sivashinsky方程在奇解子空间上的随机吸引子[J]. 课程教育研究 2017(31)
    • [13].非线性可拉伸梁方程非自治指数吸引子的存在性[J]. 云南民族大学学报(自然科学版) 2013(05)
    • [14].一类Van der Pol-Duffing振子的隐藏吸引子[J]. 重庆师范大学学报(自然科学版) 2019(05)
    • [15].具有强阻尼的基尔霍夫型吊桥方程拉回吸引子的存在性[J]. 河南大学学报(自然科学版) 2017(02)
    • [16].可拉伸梁方程一致吸引子的存在性[J]. 陇东学院学报 2016(05)
    • [17].非自治吊桥方程的拉回吸引子(英文)[J]. 四川大学学报(自然科学版) 2015(02)
    • [18].非自治反应扩散方程的拉回D-吸引子[J]. 江南大学学报(自然科学版) 2014(02)
    • [19].(2+1)维长短波方程整体吸引子的存在性[J]. 鲁东大学学报(自然科学版) 2013(01)
    • [20].Kuramoto-Sivashinsky方程的指数吸引子[J]. 西南大学学报(自然科学版) 2011(09)
    • [21].梁方程的指数吸引子[J]. 西南大学学报(自然科学版) 2011(09)
    • [22].无界域上非自治随机强阻尼波动方程的一致随机吸引子的存在性[J]. 河北师范大学学报(自然科学版) 2020(01)
    • [23].一类具有吸引子共存新混沌系统的动力学分析、电路仿真及应用[J]. 曲阜师范大学学报(自然科学版) 2017(03)
    • [24].一个新的混沌系统及其共存吸引子的研究[J]. 杭州电子科技大学学报(自然科学版) 2017(04)
    • [25].梁方程的一致紧吸引子[J]. 郑州大学学报(理学版) 2016(01)
    • [26].非线性梁方程的一致吸引子[J]. 贵州师范大学学报(自然科学版) 2014(05)
    • [27].非线性抛物方程的指数吸引子[J]. 重庆理工大学学报(自然科学) 2013(01)
    • [28].带可乘白噪音的广义Kuramoto-Sivashinsky方程的随机吸引子[J]. 西南师范大学学报(自然科学版) 2012(10)
    • [29].非线性可拉伸梁方程的拉回D-吸引子[J]. 西南大学学报(自然科学版) 2011(03)
    • [30].随机时滞FitzHugh-Nagumo格点系统随机吸引子的存在性[J]. 吉林大学学报(理学版) 2011(02)

    标签:;  ;  ;  ;  ;  

    若干流体力学方程解的长时间动力学行为研究
    下载Doc文档

    猜你喜欢