电厂水工结构的裂缝及其防治措施研究任宇新

电厂水工结构的裂缝及其防治措施研究任宇新

中国能源建设集团广东省电力设计研究院有限公司广东省广州市510663

摘要:在电厂水工结构工程中,由于水工混凝土结构的干缩而导致电厂水工混凝土结构出现裂缝,在实际防治和控制上存在着诸多不足,使水工结构工程存在安全隐患,因此裂缝的防治工作是一个普遍性的问题。

关键词:电厂水工结构;裂缝;防治措施

一、电厂水工结构裂缝的影响因素

1、混凝土结构的热胀冷缩

在电厂水工结构的施工过程中,体积较大的混凝土结构较为常见,由于较大体积的混凝土结构的内部容易存积热量,因而存在内外温度差现象,内外温度差的存在引起的内应力是导致混凝土出现裂缝的主要原因之一。对于薄板混凝土结构物,混凝土热胀问题就是因水泥水化时产生的水化热造成的,水化热随着时间不断增长,当混凝土结构物温度降低时将会出现冷缩现象,若混凝土的抗拉强度小于混凝土的冷缩力,就会导致混凝土结构物出现裂缝问题。

2、混凝土结构的碳化收缩

二氧化碳的浓度和湿度是造成混凝土碳化收缩的直接原因,若在混凝土结构物的地下存在碳酸地下水,也能引起混凝土结构物的碳化收缩。混凝土结构的碳化收缩和热胀冷缩相似,若混凝土的抗拉强度小于混凝土的碳化收缩力,就会导致混凝土结构物出现裂缝问题,且混凝土的碳化收缩过程具有不可逆性,当混凝土暴露在较高浓度的二氧化碳环境氛围中时也容易出现裂缝问题。

3、混凝土结构的化学减缩

混凝土的化学减缩是影响水工结构混凝土裂缝的重要因素之一。水泥在水化过程中,由于无水的熟料矿物质会转化为水化物,因此会导致体积变大,而化学减缩现象就是由于水化前后反应物和生成物的平均密度不同而造成的。

二、电厂水工结构裂缝的防治措施

1、电厂水工结构裂缝的预防措施

1.1在设计和施工过程中,容易产生混凝土裂缝的部位、条件及应对措施。设计过程中,对于同一栋建筑物,高矮相差悬殊的结合部位容易产生裂缝、地基变形不一致的部位容易产生裂缝,应对措施为设置“后浇带”;对于长度超过30米的管廊,容易产生裂缝,应设橡胶止水带作为伸缩、沉降缝。施工过程中,对于大体积混凝土,当模板内外温差超过25度时,容易产生温度裂缝。首先,在混凝土内设测温管,监视混凝土内温度,确保在拆模时温差小于25度。其次,控制水化热,在混凝土内参冰块,减小温差。再次,每次混凝土浇筑完毕后,应做好保温养护措施,应使混凝土浇筑体的里表温差及降温速率满足温控指标的要求,保湿养护的持续时间,不得少于14天。

1.2加强水工结构设计、施工阶段的管理。根据电厂水工结构设计规范,注重对水荷载结构的计算分析,保证电厂水工结构的应力强度,实现对电厂水工结构裂缝的科学控制。在实际工程中,通过科学的理论分析复核水工结构的最大裂缝宽度,将其控制在允许裂缝宽度范围之内,达到分散水工结构裂缝的目的,理论上通常认为最大裂缝宽度应控制在0.2mm。在工程实际中可优先选择小直径、小间距的配筋,并采用科学的配筋均匀分布方式,使得混凝土干缩变形趋于均匀化,以此控制荷载体的形变,从而降低水工结构裂缝集中发生的概率。水平方向的横向配筋必须采用螺纹钢筋,用于提高钢筋与混凝土结合的紧密度,提高支撑混凝土收缩应力的能力避免出现拉断、开裂等情况的发生。此外,通过配筋的合理设置,加强对结构刚度和强度的控制,提高水工结构物的适应能力,在结构发生变形时能够产生内重力分布,避免水工结构出现不均匀沉降以及因温差作用而引起集中应力。

1.3加强水工结构构造和温度应力的控制。在电厂水工结构裂缝的防治工作中,应重点加强构造措施和温度应力的控制。如在煤泥沉淀池和综合泵房的下部结构中,可基于设备布置情况合理设置后浇带。对于电厂循环水泵房的底板和部分侧墙工程,应加强对混凝土入模温度的控制,通过采取降低混凝土入模温度的技术措施来避免水工结构混凝土发生水化热现象,具体可采取薄层浇筑、保温养护、缓慢降温及浸水养护等措施,降低水化热从而提高水工结构混凝土的强度。对于冷却塔的底部结构工程,实际施工中可采用环形基础结构,通过分段浇筑、设后浇带、浇后及时回填、全程覆盖养护等方式,实现对水工结构裂缝的有效控制。

2、电厂水工结构裂缝的处理方法

2.1压力灌浆法。压力灌浆法是解决电厂水工结构裂缝的有效方法之一,其原理是将灌浆材料配成浆液,经压送设备后注入到混凝土的空隙中,使其逐渐扩散、胶凝、固化,从而实现水工结构物裂缝的修补。工程上采用的材料主要包括水泥浆、水泥-环氧糠酮、水玻璃浆、丙凝、氰凝等。当采用压力灌浆法处理裂缝时,应合理控制浆液配比度,确保开槽表面的清洁坚实、无浮灰及油脂,基于裂缝宽度、渗水量及渗水面积等参数科学确定选用的材料。

2.2裂缝表面封闭法。对于电厂水工结构工程,在综合泵房上部结构等地方常采用砌体结构,对于其中由温度膨胀、地基不均匀沉降等原因造成的结构裂缝,若没有造成贯通性的大裂缝,就可采用裂缝表面封闭法对裂缝进行修补,若造成贯通性的裂缝,则必须采用压力灌浆法进行修补。当结构性裂缝宽度较大、裂缝较多时,若采取多种修补措施后仍然存在结构开裂,则应采取钢筋网水泥砂浆夹板墙方式进行结构加固。

三、电厂水工结构工程中耐久性设计及应用

1、砼原材料质量检测的内容和方法

(1)水泥。在水泥厂家统一采购1-2种水泥。运至工地的每一批水泥,应有生产厂的出厂合格证和出厂试验报告,进场水泥应立即进行复验,同一批次,同品种、同强度等级的水泥为样本。以200吨袋装水泥为一检验批,而散装水泥则500吨为一检验批。如不足200t或500t也作为一个检验批。常规检测项目有:细度、凝结时间、胶砂强度、比表面积、胶砂流动度等。

(2)细骨料。细骨料是指粒径为0.16-5mm颗粒,有天然砂及人工砂两类。细骨料应清洁、级配良好、质地坚硬。人工砂的细度模数应控制在2.4-2.8的范围内,天然砂的细度模数宜在2.2-3.0范围内。以400t或600m3为一检验批。常规检测项目有:颗粒级配、含泥量、泥块含量、表观密度等。

(3)粗骨料。粒径大于5mm的骨料叫粗骨料。普通砼通常采用的粗骨料有卵石和碎石两种。常规检测项目有:含泥量、泥块含量、针片状含量、压碎指标、颗粒级配等。

(4)水。凡符合国家标准的饮用水,都可用于拌合与养护砼。地表水、地下水和其他类型水在首次用于拌合与养护砼时,须按现行有关标准,经检验合格方可使用。常规检测项目有:PH值、不溶物、可溶物、氯化物、硫酸盐的含量。

(5)掺合料。在电厂水工结构中,普遍的使用掺合料。如:粉煤灰、硅粉、粒化高炉矿渣及各种天然火山灰质混合料等。掺合料的品质必须符合现行的行业和国家的标准。

2、水工混凝土结构极限

水工混凝土的结构极限可以分为承载能力与正常使用两种极限状态。水工混凝土的承载力极限状态是指结构材料强度超过了破坏的最大承载力,或由于变形严重而导致的不能继续承载。在使用水工建筑作为挡水结构时,要将受压破坏极限值来作为设计根据。设定最低的应力限值,使最大的拉力要低于此值。所以在水工混凝土结构设计中要确定好应力约束极限状态,来测定混凝土的不连续点,减少裂缝的产生。

3、抗冲蚀材料应用

对于水工泄水结构的抗磨防蚀设计,抗冲蚀材料的性能也是其中的一项重要指标。其中材料的硬度对于其抗磨防蚀性能至关重要,若材料的韧性良好则可以吸收一定的冲击能量,从而减少其因疲劳破坏而产生断裂破坏。常见的抗磨防蚀材料有混凝土类、砂浆类、护面板材类和抗冲蚀涂层等。混凝土类包括钢纤维混凝土、高标号混凝土以及微纤维多元复合混凝土等,砂浆类包括钢纤维砂浆、硅粉砂浆和聚合物砂浆等,护面板材类包括钢板、高铝陶瓷和铸石板等,抗冲蚀涂层包括聚脲弹性体材料、双组分合成橡胶等。而对于抗冲蚀材料的使用,要针对含沙水流对于结构破坏作用的复杂性,并结合相应水流的具体情况,进行全方面的分析和设计,选用最合理的材料。

结束语

电厂水工结构的安全是电厂安全、稳定运行的基本保障,在电厂结构工程中其外观、内部常出现裂缝,在实际工程中应加强对电厂水工结构质量的控制和安全维护,根据水工结构裂缝产生的不同原因,采取针对性的预防措施和处理方法,以避免影响水工结构物的安全,保证电厂的安全稳定运行。

参考文献

[1]熊兆平.火力发电厂水工混凝土结构裂缝成因及解决措施[J].低碳世界,2015,No.10236:85-86.

[2]方仙梅.大体积混凝土裂缝的分析及防治[J].中国西部科技,2011(4):20-21.

标签:;  ;  ;  

电厂水工结构的裂缝及其防治措施研究任宇新
下载Doc文档

猜你喜欢