基于卷积神经网络的自适应样本加权脑机接口建模

基于卷积神经网络的自适应样本加权脑机接口建模

论文摘要

针对脑机接口系统手动提取特征而产生的信息丢失与过拟合问题,建立了一个纯数据驱动的端到端的卷积神经网络模型.同时,为了解决卷积神经网络(convolutional neural network, CNN)需要大量数据而单人脑电数据量小的问题,建立了一套使用多人数据来建立目标用户模型的方法.通过分析其他人数据对目标个体模型的适应程度,清除那些对于目标模型贡献为负的样本.然后,在CNN网络的训练过程中,使用了一种元学习技术,赋予每一个训练数据一个权值.在训练CNN网络时,每一步网络参数更新之后,元学习器会根据训练集中数据样本对于最终模型的影响,自适应的调整每个样本数据的权值.实验结果表明,所提方法得到了比传统方法更好的分类精度,验证了所提方法的有效性.

论文目录

  • 0 引言
  • 1 方法
  •   1.1 数据预处理
  •   1.2 卷积神经网络
  •   1.3 基于影响函数的数据清洗
  •   1.4 对数据加权的双层学习模型
  • 2 实验结果
  • 3 结论
  • 文章来源

    类型: 期刊论文

    作者: 邹宜君,赵新刚,徐卫良,韩建达

    关键词: 脑机接口,卷积神经网络,样本加权

    来源: 信息与控制 2019年06期

    年度: 2019

    分类: 信息科技,医药卫生科技

    专业: 生物医学工程,自动化技术

    单位: 中国科学院沈阳自动化研究所机器人学国家重点实验室,中国科学院大学,奥克兰大学,南开大学

    基金: 国家自然科学基金资助项目(U1813214,61773369,61573340)

    分类号: TP183;R318

    DOI: 10.13976/j.cnki.xk.2019.9054

    页码: 658-665

    总页数: 8

    文件大小: 1495K

    下载量: 126

    相关论文文献

    • [1].基于深度可分离卷积的轻量级时间卷积网络设计[J]. 计算机工程 2020(09)
    • [2].卷积神经网络中的激活函数分析[J]. 科学技术创新 2019(33)
    • [3].基于分组卷积的密集连接网络研究[J]. 江苏科技大学学报(自然科学版) 2020(01)
    • [4].基于符号图卷积网络的药物互作用关系预测[J]. 现代计算机 2020(16)
    • [5].关于深度卷积神经网络在计算机视觉中的应用研究[J]. 数码世界 2020(06)
    • [6].卷积等价分布簇的推广及其分布卷积的封闭性[J]. 伊犁师范学院学报(自然科学版) 2013(04)
    • [7].L(γ)族卷积的封闭性[J]. 安庆师范学院学报(自然科学版) 2011(01)
    • [8].一维量子卷积计算[J]. 计算机工程与应用 2020(08)
    • [9].基于时间卷积网络的机器阅读理解[J]. 福州大学学报(自然科学版) 2020(03)
    • [10].局部卷积等价分布簇的扩张及其卷积的封闭性[J]. 伊犁师范学院学报(自然科学版) 2015(04)
    • [11].用于室内环境语义分割的全卷积网络[J]. 长春理工大学学报(自然科学版) 2020(04)
    • [12].基于卷积自编码器的心电压缩方法[J]. 电子设计工程 2019(22)
    • [13].卷积神经网络综述[J]. 中原工学院学报 2017(03)
    • [14].基于卷积神经网络的图像识别[J]. 科技创新导报 2019(24)
    • [15].基于分组卷积和空间注意力机制的单幅图像去雨方法[J]. 电脑知识与技术 2020(20)
    • [16].基于深度可分离卷积结构的人脸表情识别研究[J]. 电脑与电信 2020(06)
    • [17].多通道融合分组卷积神经网络的人群计数算法[J]. 小型微型计算机系统 2020(10)
    • [18].卷积等价分布簇的推广及其分布卷积根的封闭性[J]. 伊犁师范学院学报(自然科学版) 2018(01)
    • [19].用于行为识别的通道可分离卷积神经网络[J]. 信号处理 2020(09)
    • [20].“数字信号处理”中分段卷积的教学探讨[J]. 电气电子教学学报 2011(02)
    • [21].一种面积与功耗优化的卷积器设计[J]. 计算机工程 2010(22)
    • [22].基于深度卷积网络与空洞卷积融合的人群计数[J]. 上海师范大学学报(自然科学版) 2019(05)
    • [23].基于3D半密度卷积神经网络的断裂检测[J]. 地球物理学进展 2019(06)
    • [24].全卷积神经网络研究综述[J]. 计算机工程与应用 2020(01)
    • [25].淋巴结转移检测的八度卷积方法[J]. 计算机应用 2020(03)
    • [26].基于时域卷积网络精细化光伏发电功率预测[J]. 供用电 2020(10)
    • [27].基于FPGA的卷积神经网络定点加速[J]. 计算机应用 2020(10)
    • [28].基于轻量级卷积神经网络的人脸检测方法研究(英文)[J]. 机床与液压 2020(18)
    • [29].一种新型2-D卷积器的FPGA实现[J]. 微电子学与计算机 2011(09)
    • [30].普通型Bell多项式与卷积多项式序列的若干恒等式[J]. 科学技术与工程 2010(03)

    标签:;  ;  ;  

    基于卷积神经网络的自适应样本加权脑机接口建模
    下载Doc文档

    猜你喜欢