图的k-全染色问题与Gr?bner基求解

图的k-全染色问题与Gr?bner基求解

论文摘要

对于任意给定的有限图和任一正整数k,本文证明图的k-全染色存在性问题等价于一个多元多项式方程组在{1,2,…,k}范围的求解问题,并通过使用Grbner基给出一个图k-全可染色的有效判别与求解方法,进而求得图的全可染色数与极小全染色方案.

论文目录

  • 1 引言
  • 2 图的k-全染色与多元多项式方程组的解
  • 3 图的k-全染色存在性的基判别
  • 4 求图的k-全染色方案,全可染色数及极小全可染方案的基方法
  •   4.1 求图的k-全染色方案的计算方法
  •   4.2 求图的全可染色数及极小全可染方案的计算方法
  • 5 一个计算实例
  • 文章来源

    类型: 期刊论文

    作者: 熊雪玮,刘培江,王浩华

    关键词: 全染色,极小全染色,全染色数

    来源: 数学理论与应用 2019年02期

    年度: 2019

    分类: 基础科学

    专业: 数学

    单位: 海南大学理学院数学系,广东财经大学统计与数学学院

    基金: 国家自然科学基金(11761025,11901114),广东省教育厅青年创新人才类(2017KQNCX081),广州市科技创新一般项目(201904010010),中山大学广东省计算科学重点实验室开放课题基金资助(2018001),海南省研究生创新科研课题项目(Hys2019-59)

    分类号: O157.5

    页码: 20-31

    总页数: 12

    文件大小: 249K

    下载量: 5

    相关论文文献

    • [1].3×n方格染色问题的两个新结果[J]. 数学通报 2011(12)
    • [2].一道高考染色问题的创新解法及推广[J]. 中学数学研究 2019(04)
    • [3].染色问题的相互转换探究[J]. 福建中学数学 2009(05)
    • [4].关于2×n方格的染色问题研究[J]. 中学数学研究 2011(01)
    • [5].从染色问题谈两个计数原理的教学[J]. 中学数学 2008(21)
    • [6].一道染色问题的妙解[J]. 上海中学数学 2008(01)
    • [7].对一类环形染色问题的探究[J]. 中学数学研究 2017(02)
    • [8].“无心”和“有心”染色问题[J]. 数学学习与研究 2015(11)
    • [9].例谈区域染色问题[J]. 数理化解题研究 2018(07)
    • [10].染色问题解题探究[J]. 中学生数理化(学习研究) 2017(07)
    • [11].染色问题[J]. 数学大世界(小学五六年级适用) 2013(04)
    • [12].两次捆绑快速解决有关染色问题[J]. 中学教学参考 2009(26)
    • [13].染色问题解题策略例说[J]. 青苹果 2009(06)
    • [14].圆环染色问题的公式解法[J]. 中学生数学 2009(09)
    • [15].快速学会对染色问题的彻底处理[J]. 中学生数理化(教与学) 2011(10)
    • [16].一类环状染色问题的求解与变式应用[J]. 高中数学教与学 2018(17)
    • [17].利用数列递推关系巧解染色问题[J]. 中学数学研究 2010(05)
    • [18].计数中一类染色问题的探讨[J]. 中小学数学(高中版) 2015(06)
    • [19].高考中一类染色问题的推广与应用[J]. 数学爱好者(高考版) 2008(12)
    • [20].通过“染色问题”,培养中学生化归思维[J]. 阴山学刊(自然科学版) 2014(04)
    • [21].项链的若干染色问题[J]. 科技导报 2012(07)
    • [22].排列组合中的染色问题[J]. 青海教育 2008(04)
    • [23].环形染色问题的公式解法[J]. 中学数学杂志 2008(09)
    • [24].关于排列组合中染色问题的一种通用解法的研究[J]. 考试(高考数学版) 2012(09)
    • [25].关于图的染色问题算法的新研究[J]. 山东轻工业学院学报(自然科学版) 2008(03)
    • [26].突破染色问题[J]. 中学生数理化(高三) 2016(03)
    • [27].正棱台柱图的染色问题[J]. 阴山学刊(自然科学) 2013(02)
    • [28].项链染色问题探讨[J]. 新疆教育学院学报 2012(03)
    • [29].排列组合中的染色问题[J]. 科技信息 2011(10)
    • [30].染色问题的解法示例[J]. 中学生数理化(高考版) 2011(01)

    标签:;  ;  ;  

    图的k-全染色问题与Gr?bner基求解
    下载Doc文档

    猜你喜欢