复微分-差分方程组的超越解 献给余家荣教授100华诞

复微分-差分方程组的超越解 献给余家荣教授100华诞

论文摘要

本文利用复差分值分布理论和复微分方程理论,将复差分方程和微分方程结合起来,首先研究一类复高阶微分-差分方程超越整函数解,给出其超越整函数解的具体形式.其次,进一步考虑更为复杂的两类复微分-差分方程组超越整函数解的形式以及微分-差分方程组解的存在性问题,得到在一定条件下不存在超越整函数解的结论,例子表明本文定理中的条件是精确的.第三,讨论一类复微分-差分方程组,得到关于解的增长级的一个结果.最后,讨论一类复高阶?差分微分-函数方程超越亚纯解的特征函数,在对其系数的特征函数给出限制时,得到其超越亚纯解的特征估计,例子也表明本文的条件是精确的.

论文目录

文章来源

类型: 期刊论文

作者: 刘曼莉,高凌云

关键词: 微分差分方程,超越函数,解的性质

来源: 中国科学:数学 2019年11期

年度: 2019

分类: 基础科学

专业: 数学

单位: 山东大学数学学院,暨南大学数学系

基金: 国家自然科学基金(批准号:11271161)资助项目

分类号: O175.7

页码: 1633-1654

总页数: 22

文件大小: 380K

下载量: 32

相关论文文献

  • [1].多层差分方程的隐式中点法稳定性判据仿真[J]. 计算机仿真 2020(06)
  • [2].特殊差分方程的求解[J]. 绍兴文理学院学报(自然科学) 2020(03)
  • [3].一阶非线性模糊差分方程动力学行为研究[J]. 模糊系统与数学 2019(03)
  • [4].无穷分数差分方程三点边值问题[J]. 应用数学学报 2015(06)
  • [5].关于复差分方程组的允许解的形式[J]. 数学物理学报 2016(05)
  • [6].差分方程在经济动态分析中的应用[J]. 河南教育学院学报(自然科学版) 2014(04)
  • [7].动态经济分析中自治差分方程组的均衡值与收敛性[J]. 北京服装学院学报(自然科学版) 2014(03)
  • [8].一类高阶有理差分方程的解[J]. 数学的实践与认识 2015(14)
  • [9].差分方程在金融领域的应用[J]. 课程教育研究 2018(26)
  • [10].带周期参数的差分方程组的全局性质[J]. 河北北方学院学报(自然科学版) 2015(05)
  • [11].用差分方程理论求一类数列的通项公式[J]. 数学学习与研究 2010(09)
  • [12].泛函差分方程的概周期解的存在和稳定性[J]. 佳木斯大学学报(自然科学版) 2013(04)
  • [13].有限延迟差分方程中的平均理论[J]. 哈尔滨师范大学自然科学学报 2012(01)
  • [14].差分方程在概率问题中的应用[J]. 高师理科学刊 2011(06)
  • [15].一类有理差分方程的全局渐近稳定性[J]. 南华大学学报(自然科学版) 2010(03)
  • [16].关于z变换的研究及其在解差分方程中的应用[J]. 数学的实践与认识 2010(14)
  • [17].一类高阶有理差分方程的全局渐近稳定性[J]. 兰州理工大学学报 2008(01)
  • [18].一类非线性有理差分方程的全局渐近稳定性[J]. 兰州理工大学学报 2008(03)
  • [19].具有指数项的高维循环差分方程的动力学性质[J]. 济南大学学报(自然科学版) 2019(04)
  • [20].一类差分方程的S渐近ω周期解[J]. 江西科学 2017(06)
  • [21].一类复差分方程组的解的增长级(英文)[J]. 数学季刊(英文版) 2018(01)
  • [22].一类二阶非线性差分方程同宿解的存在性[J]. 应用数学学报 2015(06)
  • [23].一类三阶有理差分方程组的解[J]. 中北大学学报(自然科学版) 2016(04)
  • [24].具有超前和滞后的2n阶泛函差分方程的周期解[J]. 南京师大学报(自然科学版) 2014(02)
  • [25].脉冲差分方程的两度量实用稳定性[J]. 保定学院学报 2010(03)
  • [26].具有半正非线性项的分数阶差分方程组边值问题的正解[J]. 数学物理学报 2020(01)
  • [27].基于差分方程的杭州旅游收入研究[J]. 经济研究导刊 2019(22)
  • [28].一类具指数函数系数的非线性复差分方程[J]. 工程数学学报 2017(01)
  • [29].一类复差分方程组的亚纯解[J]. 数学学报(中文版) 2016(03)
  • [30].若干q-差分方程的形式解及其应用[J]. 杭州师范大学学报(自然科学版) 2017(02)

标签:;  ;  ;  

复微分-差分方程组的超越解 献给余家荣教授100华诞
下载Doc文档

猜你喜欢