Markov切换的脉冲随机泛函微分方程的指数稳定性

Markov切换的脉冲随机泛函微分方程的指数稳定性

论文摘要

研究了一类具有Markov切换的脉冲随机泛函微分方程的全局p阶指数稳定性。通过利用It?公式,引入一类特殊的Lyapunov函数,运用数学分析方法、Rzauminkin-型方法和不等式技巧建立了该系统全局p阶矩指数的稳定性定理,获得了其p阶矩Lyapunov指数的上限,改善和推广了相关文献的结果,并通过一个实例说明了本文结论具有更低的保守性。

论文目录

  • 0 引 言
  • 1 预备知识
  •   (1) (局部Lipschtz条件)
  •   (2) (线性增长条件)
  • 2 具有Markov切换的脉冲随机泛函微分方程指数稳定性
  • 3 应用数例
  • 4 结 论
  • 文章来源

    类型: 期刊论文

    作者: 杨树杰,毛凯,陈涵

    关键词: 泛函微分方程的指数稳定性,切换,函数,型方法

    来源: 黑龙江大学自然科学学报 2019年05期

    年度: 2019

    分类: 基础科学

    专业: 数学

    单位: 海军航空大学系统科学与数学研究所,中国人民解放军第91576部队

    基金: 山东省自然科学基金资助项目(ZR2014AM006)

    分类号: O211.63

    DOI: 10.13482/j.issn1001-7011.2017.10.252

    页码: 551-557

    总页数: 7

    文件大小: 185K

    下载量: 30

    相关论文文献

    • [1].一类脉冲随机泛函微分方程的分布稳定性分析[J]. 数学杂志 2020(02)
    • [2].无穷时滞脉冲随机泛函微分方程一般衰减意义下p阶矩稳定性[J]. 湖北大学学报(自然科学版) 2020(04)
    • [3].三阶时滞泛函微分方程的振动性[J]. 山西师范大学学报(自然科学版) 2020(03)
    • [4].几类泛函微分方程的稳定性比较研究[J]. 重庆工商大学学报(自然科学版) 2019(04)
    • [5].一类二阶具多时滞次二次增长条件泛函微分方程同宿轨的存在性[J]. 汕头大学学报(自然科学版) 2017(01)
    • [6].无限滞后测度泛函微分方程的平均化(英文)[J]. 数学杂志 2017(05)
    • [7].关于脉冲泛函微分方程的一种新比较原理[J]. 江西科学 2015(04)
    • [8].一类二阶迭代泛函微分方程的周期解[J]. 应用数学 2020(02)
    • [9].脉冲中立泛函微分方程概周期解的存在性(英文)[J]. 应用数学 2015(01)
    • [10].脉冲滞后泛函微分方程的平均化(英文)[J]. 应用数学 2015(01)
    • [11].比较原理和无限时滞随机泛函微分方程解的稳定性[J]. 广东工业大学学报 2015(04)
    • [12].一类奇异泛函微分方程边值问题的多重正解[J]. 数学杂志 2013(01)
    • [13].一阶非线性泛函微分方程的振动准则[J]. 贵州师范大学学报(自然科学版) 2013(05)
    • [14].一类变时滞泛函微分方程的解[J]. 高等数学研究 2012(01)
    • [15].时滞泛函微分方程解的唯一性和渐近性分析[J]. 河北北方学院学报(自然科学版) 2012(05)
    • [16].四阶泛函微分方程边值问题正解的存在性[J]. 高校应用数学学报A辑 2011(01)
    • [17].B空间中无限时滞随机泛函微分方程解的估计(英文)[J]. 应用数学 2011(04)
    • [18].一类二阶时滞泛函微分方程的周期解[J]. 内蒙古大学学报(自然科学版) 2010(01)
    • [19].一类具有分布时滞的二阶泛函微分方程周期解[J]. 哈尔滨商业大学学报(自然科学版) 2009(01)
    • [20].脉冲时滞泛函微分方程正周期解的存在性[J]. 合肥工业大学学报(自然科学版) 2009(04)
    • [21].一类脉冲泛函微分方程周期解的存在性[J]. 安徽大学学报(自然科学版) 2009(03)
    • [22].一类脉冲泛函微分方程正周期解的存在性[J]. 安徽建筑工业学院学报(自然科学版) 2008(05)
    • [23].滞后型脉冲泛函微分方程解对初值的可微性[J]. 科学技术与工程 2008(02)
    • [24].比较原理和带马尔可夫调制的随机泛函微分方程(英文)[J]. 应用数学 2008(04)
    • [25].一阶迭代泛函微分方程的解析解[J]. 科学技术与工程 2008(19)
    • [26].带双参数的脉冲泛函微分方程正周期解的存在性[J]. 山东大学学报(理学版) 2015(06)
    • [27].抽象泛函微分方程的权伪概自守温和解(英文)[J]. 湖南师范大学自然科学学报 2015(05)
    • [28].一类高维脉冲泛函微分方程周期解的存在性(英文)[J]. 生物数学学报 2014(01)
    • [29].一类无限时滞随机泛函微分方程解的存在唯一性[J]. 衡阳师范学院学报 2014(03)
    • [30].一类中立型随机泛函微分方程的稳定性分析[J]. 四川师范大学学报(自然科学版) 2011(04)

    标签:;  ;  ;  ;  

    Markov切换的脉冲随机泛函微分方程的指数稳定性
    下载Doc文档

    猜你喜欢