导读:本文包含了电极性能论文开题报告文献综述、选题提纲参考文献及外文文献翻译,主要关键词:电极,电化学,纳米,石墨,性能,电容器,吡咯。
电极性能论文文献综述
赵小云,王叁反,周键,邹信,张学敏[1](2019)在《Ce含量对Ti/IrO_2-SiO_2-CeO_2电极电催化性能的影响》一文中研究指出为降低析氧电位,改善电极表面形貌,制备电催化性能良好的Ti基IrSi电极,在煅烧温度为450℃条件下,采用热分解法制备了不同Ce含量的Ti/IrO_2+SiO_2+CeO_2氧化物电极,采用SEM对电极的表观形貌进行表征,采用循环伏安曲线、析氧极化曲线及交流阻抗图谱对电极的电催化性能进行表征。结果表明,添加适量Ce可使晶粒分散均匀,裂纹数目增多,电极表面变得平坦、致密、均匀,同时析氧电位降低,孔隙率增加,电催化活性大大提高。但过量Ce又会对电极电催化性能产生不利影响,Ce含量达到10%时,裂纹数量最多且分布均匀,涂层形貌良好,析氧电位达到最低,为1.23V,电催化性能达到最佳。(本文来源于《有色金属工程》期刊2019年12期)
芮保珍,施鹰,谢建军,雷芳,范灵聪[2](2019)在《真空浸渍法制备生物质炭/石墨烯复合电极及其充放电性能研究》一文中研究指出生物质炭具有天然的分级多孔结构,是双电层电容器优良的电极材料,但是其电导率低限制了其应用。将具有良好导电性能的石墨烯与生物质炭做成复合材料,可提高超级电容器的性能。采用真空浸渍法将石墨烯负载到生物质炭的表面和孔隙中。石墨烯不仅提高了生物质炭的电导率,而且增加了比表面积。生物质炭/石墨烯复合电极在电流密度为0. 5 A/g时,比电容大小为159. 74 F/g,比未负载石墨烯的纯生物质炭电极提高了4倍多。充放电循环5 000次,性能无衰减,呈现出良好的稳定性。(本文来源于《现代化工》期刊2019年12期)
朱琎,尹艳平,马澄,马国军[3](2019)在《具有ITO电极的QCM设计与性能研究》一文中研究指出为了提高石英晶体微天平(QCM)的检测灵敏度,提出了一种具有氧化铟锡(ITO)电极结构的QCM。利用有限元分析软件在QCM芯片电极区采用密度等效法实现计算量的简化,在通过电极尺寸优化得到具有理想能陷效应的QCM的基础上,采用控制磁控溅射的气体压强、工作电压、电流等方法,得到具有导电性好,平滑度高,透光性优良的ITO电极。经振荡频率测试及质量灵敏度分析计算表明,ITO电极的QCM频率稳定性良好(频率变化仅3 Hz),质量灵敏度是金电极QCM的1.5倍。(本文来源于《压电与声光》期刊2019年06期)
董罡,徐建梅,罗望,董浩斌[4](2019)在《海洋环境用Ag/AgCl固体多孔电极的制备工艺与性能》一文中研究指出通过改变前驱粉体的干燥方法和烧结温度研究了电极制备工艺对前驱粉体形貌及Ag/AgCl固体多孔电极性能的影响,优化了电极制备的工艺参数。结果表明:利用喷雾干燥法所制得的AgCl粉体细小,在465℃烧结制得的Ag/AgCl电极的稳定性良好,在稳定后140h内最优电极对之间的极差电位波动即电位漂移量为20.5μV,24h内的电位漂移量小于10μV;且该工艺重复性好,制备的3对电极在稳定后24h内的电位漂移量均不超过20μV;该电极的长期稳定性较好,在人工海水中浸泡10个月后,其在稳定后24h内的电位漂移量变化较小。(本文来源于《腐蚀与防护》期刊2019年12期)
谢超,洪国辉,赵丽娜,杨伟强,王继库[5](2019)在《石墨烯/聚吡咯纳米纤维超级电容器电极材料的制备及其电化学性能》一文中研究指出超级电容器因其具有较高的循环稳定性和较好的能量密度而成为储能器件中的研究热点,其电极材料及制备方法是决定超级电容器电化学性能的关键因素。本文以聚环氧乙烷-聚环氧丙烷-聚环氧乙烷叁嵌段共聚物(P123)为软模板,通过一步原位聚合法成功地制备了石墨烯/聚吡咯纳米纤维(GR/PPy NF)复合超级电容器电极材料。通过X射线衍射(XRD),X射线光电子能谱(XPS)、透射电子显微镜(TEM)和傅里叶变换红外光谱仪(FT-IR)等对复合材料的结构和形态进行了系统的表征。利用电化学方法对GR/PPy NF复合电极材料的电化学性能进行了系统的分析。结果表明,在电流密度0. 5 A/g下,纳米复合材料的比电容量高达969. 5 F/g,在充放电600圈之后,仍可保留初始比电容的88%,展示了良好的电容性能及循环稳定性。GR/PPy NF制备简单,性能优异,是一种很有前途的能量转换/存储材料。(本文来源于《应用化学》期刊2019年12期)
赵媛媛,刘文静,董培,张亮,杨政伟[6](2019)在《聚苯胺中间层改性Ti/PbO_2电极的制备及其降解性能》一文中研究指出引入导电聚合物聚苯胺膜(PANI,polyaniline)对Ti/PbO_2电极进行改性,采用两步电沉积法成功制备出Ti/PANI/PbO_2电极。通过扫描电镜(SEM)、X射线衍射(XRD)、线性伏安扫描(LSV)和交流阻抗(EIS)对制备的电极进行表征,以甲基橙为目标污染物,探讨了PANI的沉积时间对电极性能的影响,并研究了Ti/PANI/PbO_2电极对罗丹明B和4-硝基苯酚的降解性能。结果表明,PANI的引入未影响活性层PbO_2的晶相结构和形貌特征,但显着提高了电极的析氧电位,Ti/PANI/PbO_2的析氧电位可达3.43V。当PANI聚合时间为30min时,电极Ti/PANI-30/PbO_2的电化学性能和电催化降解效果最佳。在电流密度为30mA/cm2、污染物初始浓度为50mg/L、Na2SO4浓度为0.1mol/L的实验条件下,反应120min后,Ti/PANI-30/PbO_2对甲基橙、罗丹明B和4-硝基苯酚的去除率分别为99.8%、99.9%和94.0%。(本文来源于《化工进展》期刊2019年12期)
梁先文[7](2019)在《银纳米线的制备、焊接及其透明电极性能研究》一文中研究指出柔性光电器件的飞速发展正给人们的生活带来前所未有的变革。透明电极作为光电器件的关键部件,吸引了众多科研工作者的关注。金属银纳米线(AgNWs)由于其突出的导电性、透明性和机械性能,被视为当今柔性光电器件最具潜力的电极材料。如何进一步强化AgNWs透明电极的光电性质以更广泛地满足柔性光电器件的应用,已成为亟待解决的关键问题。首先,采用改进的多元醇法控制制备AgNWs。以CuCl_2和不锈钢纤维为控制剂控制合成AgNWs的纯度;在此基础上,引入NaBr为协调控制剂调控AgNWs的直径;通过进一步改变反应过程中的搅拌转速,可获得不同长度的AgNWs;考察不同直径及长度AgNWs制作的透明电极的光电性质。其次,采用HCl蒸汽诱导AgNWs发生光化学纳米焊接。室温下,通过日光灯照射,空气中的O_2和HCl蒸汽作为蚀刻对,驱动Ag原子从AgNWs节点处底部纳米线转移到顶部纳米线,并以顶部纳米线的晶格为模板外延重结晶熔合节点。焊接能有效增强AgNWs透明电极的光电性质,并获得低方阻高透过率(R_s=15ohm/sq,T=85%)的AgNWs电极。该电极表现出优异的发热性能、电磁屏蔽效能和机械性能。然后,采用联氨蒸汽诱导AgNWs发生原位化学纳米焊接。AgNWs自然氧化形成的表面氧化层作为焊料,联氨蒸汽作为还原剂,通过原位氧化还原产生的银原子外延重结晶熔合AgNWs节点。经过焊接,AgNWs透明电极的方阻可降低5个数量级(10~7 ohm/sq-10~2 ohm/sq),且保持原始高的透过率~96%,其光电性质可提高5个数量级(品质因数:10~(-3)-10~2),并进一步获得高透过率(T=96%,R_s=77 ohm/sq)和低方阻(R_s=18 ohm/sq,T=92%)的AgNWs透明电极。该焊接能有效改善电极的可拉伸性,并具有修复能力。焊接的AgNWs透明电极制作的单电极摩擦纳米发电机透过率高达95%,并表现出优异的电输出和传感性能。基于出色的透明性,该纳米发电机可用作触觉传感器记录手机触控。最后,采用UV诱导AgNWs发生光热纳米焊接。室温下,选择常见的UVA灯(波长范围:320 nm-400 nm)作为光源,AgNWs节点作为光驱动热源,熔合AgNWs节点。该焊接随AgNWs直径增大而减弱,且表现出自终止性和自限性。通过时域有限差分法模拟分析光热纳米焊接的机理。经过焊接,直径30 nm AgNWs透明电极的方阻可降低3个数量级(10~5 ohm/sq-10~2 ohm/sq),且保持高透过率97%,其光电性质可提高3个数量级(品质因数:0.1-110)。焊接的AgNWs透明电极具有强化的机械柔性、电磁屏蔽效能及发热性能,并进一步制得智能调光膜、透明发热器和透明摩擦纳米发电机。将该UV焊接技术整合到卷对卷狭缝挤压涂布工艺,连续批量涂布了低方阻高透过率(R_s=25 ohm/sq,T=90%)的柔性AgNWs透明电极。综上所述,本文采用改进的多元醇法实现了AgNWs的纯度和尺寸控制制备,开发的纳米焊接方法能有效降低AgNWs透明电极的方阻且保持高透过率,显着提高电极的光电性质,强化机械柔性。焊接的AgNWs电极在柔性光电领域表现出广泛而良好的应用。因此,以上研究为AgNWs的可控制备及焊接,增强AgNWs透明电极的性能,进而制作高性能的柔性光电器件提供理论依据和技术支持。(本文来源于《中国科学院大学(中国科学院深圳先进技术研究院)》期刊2019-12-01)
于谦,张文光,尹雪乐[8](2019)在《基于定向电沉积的神经电极表面性能》一文中研究指出采用一种新的定向电沉积方法在铂电极表面获得了具有规律的微观结构,经过电化学性能测试来评价不同试验条件下的电沉积处理效果,并通过超声处理和电脉冲刺激来验证电沉积后电极表面性能的机械和电化学稳定性.结果表明:所制备的铂电极表面微观结构能够增大电荷吸附的表面积;结晶调整剂氯化铵的加入,使得电极表面微观结构更具规律性,并实现了定向电沉积;相较于无规则电沉积,其双层电容及阴极电荷存储能力分别提高了26.8%、85.7%;当结晶调整剂浓度为4 mol/L,电解液温度为50℃时,能达到最佳的性能优化效果.(本文来源于《上海交通大学学报》期刊2019年11期)
周萱,雷元元,唐莉莉[9](2019)在《钯金合金纳米线修饰电极对过氧化氢的催化传感性能研究》一文中研究指出通过变频交流电沉积自组装法制得钯金合金纳米线修饰电极,并利用其所具有的良好化学稳定性及电催化性能,研究了该修饰电极对过氧化氢的传感性能。钯金合金纳米线修饰电极对过氧化氢的线性响应范围为10×10-6~9. 1×10-3mol·L-1;当信噪比为3时,其最低检测限可达到0. 75×10-6mol·L-1;灵敏度达到148. 68μA·mmol-1·dm-3;通过其稳定性与重现性的研究可知,该电极具有长期稳定性和良好的重现性。(本文来源于《广州化工》期刊2019年22期)
张校飞,左小华,汪汝武,张峰[10](2019)在《醇水法制备纳米氧化镍电极的结构与电化学性能》一文中研究指出采用醇水法制备了纳米氧化镍粉体材料并分析了其粉体形成过程,重点研究了热处理温度对氧化镍粉体的相组成、形态以及氧化镍电极电化学性能的影响。结果表明,氧化镍粉体由前驱体Ni2(OH)2CO3·xH2O在270℃附近分解产生;热处理温度对合成粉体的结晶度和比表面积具有显着影响,而粉体的结晶度和比表面积又是影响氧化镍电极电化学性能的重要因素,其中,粉体结晶度的作用占主导地位。当氧化镍粉体热处理温度为250℃时,所制氧化镍电极具有优异的电化学性能,在测试电流密度为5mA/cm2的条件下,其比电容达到1180F/g。(本文来源于《武汉科技大学学报》期刊2019年06期)
电极性能论文开题报告
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
生物质炭具有天然的分级多孔结构,是双电层电容器优良的电极材料,但是其电导率低限制了其应用。将具有良好导电性能的石墨烯与生物质炭做成复合材料,可提高超级电容器的性能。采用真空浸渍法将石墨烯负载到生物质炭的表面和孔隙中。石墨烯不仅提高了生物质炭的电导率,而且增加了比表面积。生物质炭/石墨烯复合电极在电流密度为0. 5 A/g时,比电容大小为159. 74 F/g,比未负载石墨烯的纯生物质炭电极提高了4倍多。充放电循环5 000次,性能无衰减,呈现出良好的稳定性。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
电极性能论文参考文献
[1].赵小云,王叁反,周键,邹信,张学敏.Ce含量对Ti/IrO_2-SiO_2-CeO_2电极电催化性能的影响[J].有色金属工程.2019
[2].芮保珍,施鹰,谢建军,雷芳,范灵聪.真空浸渍法制备生物质炭/石墨烯复合电极及其充放电性能研究[J].现代化工.2019
[3].朱琎,尹艳平,马澄,马国军.具有ITO电极的QCM设计与性能研究[J].压电与声光.2019
[4].董罡,徐建梅,罗望,董浩斌.海洋环境用Ag/AgCl固体多孔电极的制备工艺与性能[J].腐蚀与防护.2019
[5].谢超,洪国辉,赵丽娜,杨伟强,王继库.石墨烯/聚吡咯纳米纤维超级电容器电极材料的制备及其电化学性能[J].应用化学.2019
[6].赵媛媛,刘文静,董培,张亮,杨政伟.聚苯胺中间层改性Ti/PbO_2电极的制备及其降解性能[J].化工进展.2019
[7].梁先文.银纳米线的制备、焊接及其透明电极性能研究[D].中国科学院大学(中国科学院深圳先进技术研究院).2019
[8].于谦,张文光,尹雪乐.基于定向电沉积的神经电极表面性能[J].上海交通大学学报.2019
[9].周萱,雷元元,唐莉莉.钯金合金纳米线修饰电极对过氧化氢的催化传感性能研究[J].广州化工.2019
[10].张校飞,左小华,汪汝武,张峰.醇水法制备纳米氧化镍电极的结构与电化学性能[J].武汉科技大学学报.2019