解一般矩阵方程的Krylov子空间方法

解一般矩阵方程的Krylov子空间方法

论文摘要

本文的主要工作将求解线性方程组的Krylov子空间方法推广用于求解线性矩阵方程。我们考虑了求解一般矩阵方程、一般离散时间周期矩阵方程、一般耦合矩阵方程和一般耦合离散时间周期矩阵方程,其中包括广为人知的Lyapunov矩阵方程、Stein矩阵方程、Sylvester矩阵方程、耦合Markov跳跃Lyapunov矩阵方程、耦合Sylvester矩阵方程、以及耦合二阶Sylvester矩阵方程。这些矩阵方程广泛出现在工程、通信和科学计算等应用中。在论文的第一章,我们简要介绍了许多需要解线性矩阵方程的应用问题.我们也综述了过去几十年解线性矩阵方程和离散时间周期矩阵方程主要的算法发展.在论文的第二章,通过应用Kronecker积和向量化算子,我们开发了矩阵形式的GPBiCOR法,并用之求解一般矩阵方程和一般离散周期矩阵方程的近似解;我们也给出了扩展的GPBiCOR法的相关理论背景及其计算的主要因素。此外,在数值试验中,通过与文献中其它广泛使用的算法进行对比和分析,验证了我们所提方法的准确性和有效性。在论文的第三章,我们推广了 GPBiCG(m,l)法用于求解一般矩阵方程和一般离散时间周期矩阵方程。首先,我们简单概述了 GPBiCG(m,l)法;然后借助Kronecker积和向量化算子,我们提出了两个求解矩阵方程的迭代算法;最后通过数值实验检验了所提方法的有效性。在论文的第四章,我们先介绍了 GPBiCOR(m,l)方法,然后推广该方法求解一般矩阵方程和一般离散时间周期矩阵方程。在数值试验中求解了不同的应用问题,并通过与现有方法的比较,验证了所提方法的有效性。在论文的第五章利用Kronecker积和向量化算子,我们推广了 GPBiCOR法用于求解一般耦合矩阵方程和一般耦合离散时间周期矩阵方程。通过数值实验并与现有迭代法对比分析,检验了推广的GPBiCOR方法的准确性和有效性。在论文的第六章,利用Kronecker积和向量化算子,我们推广了 GPBiCG(m,l)法用于求解一般耦合矩阵方程和一般耦合离散时间周期矩阵方程.通过与其它迭代法比较,我们检验了 GPBiCG(m,l)法的收敛性和有效性.最后,基于GPBiCOR(m,l)法,我们构造了两种方法求解一般耦合矩阵方程和一般耦合离散时间周期矩阵方程。通过数值实验并与其它广泛使用的扩展Krylov子空间法的对比分析,检验了推广的GPBiCOR(m。l 方法的准确性和有效性。

论文目录

  • ABSTRACT
  • 摘要
  • List of Abbreviations and Notations
  • 1 Introduction
  •   1.1 A Brief Survey on the Solution of Linear Matrix Equations
  •     1.1.1 Some Numerical Methods for Solving Linear Matrix Equations
  •     1.1.2 Some Numerical Methods for Solving Discrete-time Periodic Matrix Equa-tions
  •   1.2 Aims and Outlines
  • 2 The GPBiCOR Method for Solving the General Matrix Equation and the General Discrete-Time Periodic Matrix Equations
  •   2.1 Introduction
  •   2.2 The GPBiCOR Method for Solving Linear Systems
  •   2.3 Matrix Form of the GPBiCOR Method for Solving the General Matrix Equation
  •   2.4 Matrix Form of the GPBiCOR Method for Solving the General Discrete-Time Pe-riodic Matrix Equations
  •   2.5 Numerical results
  •   2.6 Conclusions
  • 3 The GPBiCG(m,l) Method for Solving the General Matrix Equation and the GeneralDiscrete-Time Periodic Matrix Equations
  •   3.1 Introduction
  •   3.2 The GPBiCG(m,l) Method for Solving Linear Systems
  •   3.3 Matrix Form of the GPBiCG(m,l) Method for Solving the General Matrix Equation
  •   3.4 Matrix Form of the GPBiCG(m,l) Method for Solving the General Discrete-TimePeriodic Matrix Equations
  •   3.5 Numerical results
  •   3.6 Conclusions
  • 4 The GPBiCOR(m,l) Method for Solving the General Matrix Equation and the GeneralDiscrete-Time Periodic Matrix Equations
  •   4.1 Introduction
  •   4.2 The GPBiCOR(m, l) Method for Solving Linear Systems
  •   4.3 Matrix Form of the GPBiCOR(m,l) Method for Solving the General Matrix Equa-tion
  •   4.4 Matrix Form of the GPBiCOR(m,l) Method for Solving the General Discrete-TimePeriodic Matrix Equations
  •   4.5 Numerical results
  •   4.6 Conclusions
  • 5 The GPBiCOR Method for Solving the General Coupled Matrix Equations and the Gen-eral Coupled Discrete-Time Periodic Matrix Equations
  •   5.1 Introduction
  •   5.2 Matrix Form of the GPBiCOR Method for Solving the General Coupled MatrixEquations
  •   5.3 Matrix Form of the GPBiCOR Method for Solving the General Coupled Discrete-Time Periodic Matrix Equations
  •   5.4 Numerical results
  •   5.5 Conclusions
  • 6 The GPBiCG(m,l)Method for Solving the General Coupled Matrix Equations and theGeneral Coupled Discrete-Time Periodic Matrix Equations
  •   6.1 Introduction
  •   6.2 Matrix Form of the GPBiCG(m,l) Method for Solving the General Coupled MatrixEquations
  •   6.3 Matrix Form of the GPBiCG(m,l) Method for Solving the General Coupled Discrete-Time Periodic Matrix Equations
  •   6.4 Numerical results
  •   6.5 Conclusions
  • 7 The GPBiCOR(m,l) Method for Solving the General Coupled Matrix Equations and theGeneral Coupled Discrete-Time Periodic Matrix Equations
  •   7.1 Introduction
  •   7.2 Matrix Form of the GPBiCOR(m, l) Method for Solving the General Coupled Ma-trix Equations
  •   7.3 Matrix Form of the GPBiCOR(m,l) Method for Solving the General Coupled Discrete-Time Periodic Matrix Equations
  •   7.4 Numerical results
  •   7.5 Conclusions
  • 8 Summary and Further Research
  •   8.1 Summary
  •   8.2 Future Research
  • References
  • Published Academic Articles during PhD period
  • Acknowledgements
  • Author Information
  • 文章来源

    类型: 博士论文

    作者: 萨利姆(Basem Ibrahim Esawy Selim)

    导师: 于波,杜磊

    关键词: 一般矩阵方程,子空间方法

    来源: 大连理工大学

    年度: 2019

    分类: 基础科学

    专业: 数学,数学

    单位: 大连理工大学

    分类号: O241.6

    总页数: 228

    文件大小: 10847K

    下载量: 104

    相关论文文献

    标签:;  ;  

    解一般矩阵方程的Krylov子空间方法
    下载Doc文档

    猜你喜欢