导读:本文包含了离散群作用论文开题报告文献综述、选题提纲参考文献及外文文献翻译,主要关键词:流形,作用,乘积,遍历,拓扑,代数,混沌。
离散群作用论文文献综述
郝改[1](2010)在《有离散群作用的C*-对应的交叉乘积(英文)》一文中研究指出假设(X,A,φ)是一个有离散群G作用的C~*-对应,并且满足条件φ是单的,K(X)■φ(A),证明了对于其自然诱导的C~*-对应(X■G,A■G,φ),■_X■G≌■_(X■G)(本文来源于《南开大学学报(自然科学版)》期刊2010年06期)
史恩慧[2](2010)在《离散群作用下的一维拓扑动力系统(英文)》一文中研究指出本文简述了离散群作用下一维拓扑动力系统研究的最新成果,其内容包括可扩性、乒乓戏与几何熵;不变集与不变测度;拓扑k-传递性;敏感性与Devaney混沌;有界Euler类与共轭分类.同时一些开问题被提出.(本文来源于《数学进展》期刊2010年02期)
史恩慧[3](2003)在《离散群作用的几点动力性质》一文中研究指出本文考虑离散群尤其是Z~d作用的动力性质。 第一章,介绍了离散群作用动力系统的一些背景及本文的主要结论。 第二章,考虑连续统上Z~d膨胀作用的存在性问题。证明了图上不存在Z~2膨胀作用;闭区间上存在自由积Z*Z的膨胀作用。 第叁章,考虑离散群的混沌作用。证明了含自由弧的空间不存在混沌群作用;讨论了G×F型混沌作用的结构,这里F是有限群;举了一个拓扑空间的例子,其上存在混沌群作用但不存在混沌同胚。 第四章,考虑离散群作用的遍历性问题。讨论了离散群在紧群上代数作用的极大遍历子群与distal性质的关系;给出了Z~d代数作用的distal性质的刻画;证明了离散群等度连续作用下,遍历与拓扑可迁等价。 第五章,考虑李群拓扑压缩自同构。证明了连通李群自同构的强拓扑压缩性质与弱拓扑压缩性质等价;存在拓扑压缩自同构的连通李群是幂零的。(本文来源于《浙江大学》期刊2003-04-01)
离散群作用论文开题报告
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文简述了离散群作用下一维拓扑动力系统研究的最新成果,其内容包括可扩性、乒乓戏与几何熵;不变集与不变测度;拓扑k-传递性;敏感性与Devaney混沌;有界Euler类与共轭分类.同时一些开问题被提出.
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
离散群作用论文参考文献
[1].郝改.有离散群作用的C*-对应的交叉乘积(英文)[J].南开大学学报(自然科学版).2010
[2].史恩慧.离散群作用下的一维拓扑动力系统(英文)[J].数学进展.2010
[3].史恩慧.离散群作用的几点动力性质[D].浙江大学.2003