求解随机微分方程的θ-Heun方法的收敛性

求解随机微分方程的θ-Heun方法的收敛性

论文摘要

Heun方法是一种求解随机微分方程数值解的重要方法,在该方法的基础上构造出一种新的数值求解方法,即θ-Heun方法,且研究了θ-Heun方法用于求解随机微分方程的收敛性.针对一个具体的标量自治随机微分方程,当方程的两个系数都满足Lipschitz和线性增长条件时,得到θ-Heun方法在均值意义、均方意义上的局部收敛阶分别为2和1,均方强收敛阶为1.并通过数值实例证明该方法比Heun方法得到的数值解更逼近解析解.

论文目录

  • 0引言
  • 1随机微分方程及数值求解方法
  •   1.1随机微分方程及性质
  •   1.2θ-Heun方法
  • 2θ-Heun方法的收敛性
  • 3数值实验
  • 文章来源

    类型: 期刊论文

    作者: 张引娣,李瑞,刘奋进

    关键词: 随机微分方程,方法,收敛性,条件

    来源: 郑州大学学报(理学版) 2019年01期

    年度: 2019

    分类: 基础科学

    专业: 数学

    单位: 长安大学理学院

    基金: 国家自然科学基金项目(211012140334,11401044,11471005)

    分类号: O211.63

    DOI: 10.13705/j.issn.1671-6841.2017176

    页码: 34-38

    总页数: 5

    文件大小: 320K

    下载量: 62

    相关论文文献

    • [1].随机微分方程的无限时间跟踪[J]. 高校应用数学学报A辑 2019(01)
    • [2].奇异随机微分方程的依分布几乎自守解[J]. 吉林大学学报(理学版) 2018(04)
    • [3].求解非线性随机微分方程混合欧拉格式的收敛性[J]. 黑龙江大学自然科学学报 2016(05)
    • [4].线性增长条件下的倒向重随机微分方程[J]. 河南师范大学学报(自然科学版) 2016(06)
    • [5].白噪声和泊松随机测度驱动的倒向重随机微分方程[J]. 应用概率统计 2016(06)
    • [6].一类非线性随机微分方程的参数估计[J]. 吉林大学学报(理学版) 2017(02)
    • [7].白噪声和泊松随机测度驱动的倒向重随机微分方程的比较定理[J]. 山东大学学报(理学版) 2017(04)
    • [8].高维非线性随机微分方程组的指数稳定性[J]. 周口师范学院学报 2017(02)
    • [9].一类量子随机微分方程适应解的稳定性[J]. 河西学院学报 2017(02)
    • [10].求解带跳随机微分方程的一类全隐式方法[J]. 纺织高校基础科学学报 2017(02)
    • [11].几种随机微分方程数值方法与数值模拟[J]. 黑龙江教育(理论与实践) 2016(10)
    • [12].几类反射随机微分方程强解的数值仿真[J]. 电子科技 2015(03)
    • [13].非自治随机微分方程的均方伪概周期温和解[J]. 兰州交通大学学报 2015(01)
    • [14].一类带跳平均场泛函随机微分方程的平稳分布[J]. 中国科学:数学 2015(05)
    • [15].随机微分方程的样本Lyapunov二次型估计[J]. 数学学习与研究 2017(03)
    • [16].一类脉冲随机微分方程解的稳定性[J]. 广东工业大学学报 2020(06)
    • [17].带跳的平均场随机微分方程的中偏差[J]. 中国科学:数学 2020(01)
    • [18].超前倒向重随机微分方程[J]. 中国科学:数学 2013(12)
    • [19].无穷水平倒向双重随机微分方程解的存在唯一性及比较定理[J]. 东华大学学报(自然科学版) 2010(01)
    • [20].一般正倒向重随机微分方程的解[J]. 应用数学和力学 2009(04)
    • [21].带跳随机微分方程的一个扩充和应用[J]. 数学学报 2009(03)
    • [22].正倒向重随机微分方程[J]. 数学物理学报 2009(04)
    • [23].一种随机微分方程的数值解法及其应用[J]. 科技创新导报 2008(35)
    • [24].多维带跳倒向双重随机微分方程解的性质[J]. 应用概率统计 2008(01)
    • [25].倒向重随机微分方程解的共单调定理[J]. 河北科技大学学报 2008(01)
    • [26].带跳的倒向重随机微分方程的比较定理[J]. 烟台大学学报(自然科学与工程版) 2008(02)
    • [27].平面上随机微分方程的一个极限定理[J]. 湖北师范学院学报(自然科学版) 2008(02)
    • [28].倒向随机微分方程的解及其比较定理[J]. 云南民族大学学报(自然科学版) 2008(03)
    • [29].一类随机微分方程的均方渐近概周期温和解[J]. 哈尔滨理工大学学报 2019(04)
    • [30].一类随机微分方程均方s渐进ω周期解的存在性(英文)[J]. 数学杂志 2018(05)

    标签:;  ;  ;  ;  

    求解随机微分方程的θ-Heun方法的收敛性
    下载Doc文档

    猜你喜欢