基于ARIMA风电机组齿轮箱故障趋势预测方法研究

基于ARIMA风电机组齿轮箱故障趋势预测方法研究

论文摘要

针对齿轮箱计划外停机和意外故障导致的风电机组安全运行问题,提出了一种基于ARIMA模型的故障趋势预测方法;方法可以处理具有非线性和非平稳性特征的齿轮箱运行状态监测数据,用以时间序列的自相关分析为基础的模型预测状态监测时间序列数据的趋势变化;选择生产现场采集到的齿轮箱油泵出口压力SCADA数据和运行实例验证了方法的有效性,实验结果的拟合效果令人满意;研究结果表明方法能够适应齿轮箱运行状态监测数据随时间的变化特征,反映出一定的运行状态变化趋势,具有较好的预测精度和较大的应用范围,对风电机组其他部件的故障趋势预测具有一定的应用参考价值。

论文目录

  • 0 引言
  • 1 ARIMA模型描述
  • 2 ARIMA建模分析
  •   2.1 建模步骤
  •   2.2 前提处理与模型识别
  •   2.3 参数估计
  •   2.4 模型检验
  •   2.5 模型预测
  • 3 实例分析
  •   3.1 状态监测数据预处理
  •   3.2 序列前提处理
  •   3.3 模型识别与参数估计
  •   3.4 模型检验
  • 4 预测结果及分析
  • 5 结束语
  • 文章来源

    类型: 期刊论文

    作者: 杨艺,付道一,雍彬

    关键词: 时间序列,故障趋势预测,齿轮箱

    来源: 重庆工商大学学报(自然科学版) 2019年03期

    年度: 2019

    分类: 工程科技Ⅱ辑

    专业: 机械工业,电力工业

    单位: 重庆工商大学计算机科学与信息工程学院,重庆工商大学重庆市检测控制集城系统工程实验室,中国船舶重工集团海装风电股份有限公司

    基金: 重庆市重点产业创新专项项目(CSTC2015ZDCY-ZTZX70012),重庆工商大学科研项目(1552001)

    分类号: TM315;TH132.41

    DOI: 10.16055/j.issn.1672-058X.2019.0003.016

    页码: 87-93

    总页数: 7

    文件大小: 2050K

    下载量: 282

    相关论文文献

    • [1].基于ARIMA模型的卫星钟差异常值探测的模型选择方法[J]. 武汉大学学报(信息科学版) 2020(02)
    • [2].基于ARIMA模型的西安市空气质量指数的分析与预测[J]. 电脑知识与技术 2019(35)
    • [3].基于ARIMA模型对四川省医疗机构卫生资源需求预测分析[J]. 预防医学情报杂志 2020(02)
    • [4].应用ARIMA模型预测石家庄市手足口病发病趋势[J]. 中国卫生统计 2020(01)
    • [5].Forecasting Method of Stock Market Volatility in Time Series Data Based on Mixed Model of ARIMA and XGBoost[J]. 中国通信 2020(03)
    • [6].ARIMA乘积季节模型在青州市布鲁氏菌病发病预测中的应用[J]. 中国医院统计 2020(02)
    • [7].基于ARIMA的入境旅游月度过夜人次预测[J]. 微型电脑应用 2020(04)
    • [8].ARIMA模型在江西省布鲁氏菌病发病数预测中的应用[J]. 中国人兽共患病学报 2020(03)
    • [9].ARIMA模型在德国小蠊密度季节消长预测中应用及抗药性[J]. 中国公共卫生 2020(03)
    • [10].Short-term Prediction of Ionospheric TEC Based on ARIMA Model[J]. Journal of Geodesy and Geoinformation Science 2019(01)
    • [11].Analysis of temporal trends of human brucellosis between 2013 and 2018 in Yazd Province, Iran to predict future trends in incidence: A time-series study using ARIMA model[J]. Asian Pacific Journal of Tropical Medicine 2020(06)
    • [12].ARIMA模型在台山地区手足口病疫情的预测作用[J]. 齐齐哈尔医学院学报 2020(07)
    • [13].我国出境旅游人次的预测与分析——基于ARIMA模型[J]. 科技经济导刊 2020(20)
    • [14].基于ARIMA乘积季节模型的某医院介入导管室手术量预测研究[J]. 中国现代手术学杂志 2020(03)
    • [15].基于ARIMA模型的轴向柱塞泵回油量预测研究[J]. 内燃机与配件 2020(21)
    • [16].基于ARIMA乘积季节模型预测医院感染患病率趋势和季节性[J]. 安徽预防医学杂志 2020(05)
    • [17].一种基于ARIMA-SVR混合方法的汇率预测模型[J]. 智库时代 2019(01)
    • [18].季节ARIMA模型在保费总收入预测中的应用[J]. 福建金融管理干部学院学报 2018(04)
    • [19].基于ARIMA模型的游客人数分析与预测[J]. 电脑与电信 2019(Z1)
    • [20].基于南昌市新建区居民伤害死亡趋势的ARIMA模型构建与预测[J]. 南昌大学学报(医学版) 2019(01)
    • [21].基于ARIMA模型的图书馆微信公众号用户量预测[J]. 中国科技信息 2019(13)
    • [22].基于ARIMA预测模型的人才市场需求分析[J]. 商讯 2019(11)
    • [23].ARIMA模型在血液供应量预测分析中的应用[J]. 电脑知识与技术 2019(22)
    • [24].基于ARIMA模型的郑州市玉米收购价分析及预测[J]. 现代商业 2019(28)
    • [25].基于ARIMA模型的新疆阿克苏地区棉花价格分析与预警[J]. 农村经济与科技 2019(19)
    • [26].基于ARIMA模型对网络舆情传播过程研究[J]. 广西质量监督导报 2019(11)
    • [27].基于ARIMA-BPNN的组合模型在重庆市艾滋病发现人数预测中的应用[J]. 预防医学情报杂志 2018(03)
    • [28].应用ARIMA模型预测某三级甲等医院门诊量[J]. 中国医院统计 2018(01)
    • [29].基于ARIMA的价格时间序列分析与预测——以沪铝1803合约为例[J]. 经贸实践 2018(10)
    • [30].ARIMA模型在肺结核登记病例数预测中的应用[J]. 江苏预防医学 2018(03)

    标签:;  ;  ;  

    基于ARIMA风电机组齿轮箱故障趋势预测方法研究
    下载Doc文档

    猜你喜欢