高光谱成像结合BP网络无损检测李子的硬度

高光谱成像结合BP网络无损检测李子的硬度

论文摘要

以"红"李子和"青"李子为研究对象,提出了基于高光谱成像技术结合误差反向传播(error Back Propagation,BP)网络无损检测李子硬度的方法。采用高光谱图像采集系统获取了李子样本的高光谱图像,并提取了感兴趣区域的平均光谱反射率;综合比较了不同光谱预处理方法(一阶导数(derivative)、标准正态变换(SNV)和多元散射校正(MSC))对BP网络模型检测效果的影响;并利用主成分分析方法对预处理后的光谱数据进行降维,以提取能反映李子硬度的特征光谱。研究结果表明:derivative预处理后的光谱具有较好的李子硬度校正能力(R_C=0.939,RMSEC=0.153),而SNV预处理后的光谱具有较好的李子硬度预测能力(R_P=0.723,RMSEP=0.580);采用主成分分析法选择了累计贡献率超过99.99%的主成分作为样本集特征光谱数据,很好地实现了光谱数据的降维,提升了BP网络模型的运行效率。这表明高光谱成像技术结合BP网络可实现李子硬度的无损检测。

论文目录

  • 1 引 言
  • 2 材料与方法
  •   2.1 材料及样本硬度测量
  •   2.2 高光谱图像采集系统
  •   2.3 高光谱图像采集与黑白校正
  •   2.4 光谱数据的预处理
  •   2.5 建模方法和模型评价
  •   2.6 数据分析
  • 3 结果与分析
  •   3.1 感兴趣区域选择
  •   3.2 光谱特征分析及预处理
  •   3.3 BP网络模型建模结果
  • 4 结 论
  • 文章来源

    类型: 期刊论文

    作者: 孟庆龙,张艳,尚静

    关键词: 遥感,无损检测,高光谱成像,网络,李子,硬度

    来源: 激光与红外 2019年08期

    年度: 2019

    分类: 信息科技,工程科技Ⅰ辑

    专业: 轻工业手工业,计算机软件及计算机应用

    单位: 贵阳学院食品与制药工程学院,贵阳学院农产品无损检测工程研究中心

    基金: 国家自然科学基金项目(No.61505036),贵州省科技计划项目(No.黔科合基础[2019]1010),贵州省普通高等学校工程研究中心(No.黔教合KY字[2016]017),贵阳市科技局贵阳学院专项资金(No.GYU-KYZ[2018]01-08)资助

    分类号: TP391.41;TS255.7

    页码: 968-973

    总页数: 6

    文件大小: 1061K

    下载量: 119

    相关论文文献

    • [1].高光谱成像技术在农产品检测中的应用[J]. 农家参谋 2020(08)
    • [2].序言[J]. 遥感学报 2020(04)
    • [3].基于高光谱成像技术预测牡蛎干制加工过程中的水分含量[J]. 中国食品学报 2020(07)
    • [4].第五届高光谱成像技术及应用研讨会征文通知[J]. 红外 2020(06)
    • [5].基于高光谱成像快速检测牛肉糜中大豆分离蛋白掺入量[J]. 食品工业科技 2020(20)
    • [6].基于高光谱成像技术的艺术品鉴定研究[J]. 文物保护与考古科学 2018(03)
    • [7].高光谱成像技术在农业中的应用概述[J]. 浙江农业科学 2017(07)
    • [8].高光谱成像技术在食品品质无损检测中的应用[J]. 食品工业科技 2016(03)
    • [9].粮油品质安全高光谱成像检测技术的研究进展[J]. 光谱学与光谱分析 2016(11)
    • [10].高光谱成像技术在水果无损检测中的应用[J]. 农机化研究 2015(07)
    • [11].基于高光谱成像技术的牛羊肉品质无损检测研究进展[J]. 新疆农垦科技 2015(06)
    • [12].人工智能和工业4.0视域下高光谱成像技术融合深度学习方法在中药领域中的应用与展望[J]. 中国中药杂志 2020(22)
    • [13].无人机载高光谱成像系统识别沥青路面血液痕迹研究[J]. 刑事技术 2020(04)
    • [14].近红外高光谱成像用于伊斯兰纸的定量化学分析[J]. 文物保护与考古科学 2020(05)
    • [15].浅谈高光谱成像技术在显现消褪字迹中的应用[J]. 法制与社会 2019(01)
    • [16].高光谱成像与应用技术发展[J]. 计测技术 2019(04)
    • [17].高光谱成像技术在农业中的应用概述[J]. 时代农机 2018(06)
    • [18].采后葡萄可溶性固形物含量的高光谱成像检测研究[J]. 河南农业科学 2017(03)
    • [19].高光谱成像技术在茶叶中的应用研究进展[J]. 核农学报 2016(07)
    • [20].高光谱成像技术在水果多品质无损检测中的应用[J]. 农业科技与装备 2016(05)
    • [21].高光谱成像技术下水果内外品质无损检测研究进展[J]. 科技经济导刊 2016(17)
    • [22].利用高光谱成像技术检测长枣表面虫伤[J]. 电子制作 2013(21)
    • [23].高光谱成像技术在肉品无损检测中的应用及进展[J]. 河南工业大学学报(自然科学版) 2014(01)
    • [24].高光谱成像技术在果蔬品质与安全无损检测中的原理及应用[J]. 光谱学与光谱分析 2014(10)
    • [25].农产品外部品质无损检测中高光谱成像技术的应用研究进展[J]. 黑龙江科技信息 2014(27)
    • [26].农产品无损检测中高光谱成像技术的应用研究[J]. 农机化研究 2013(06)
    • [27].高光谱成像在食品质量评估方面的研究进展与应用(一)[J]. 肉类研究 2012(04)
    • [28].高光谱成像在食品质量评估方面的研究进展与应用(二)[J]. 肉类研究 2012(05)
    • [29].农产品外部品质无损检测中高光谱成像技术的应用研究进展[J]. 光谱学与光谱分析 2011(08)
    • [30].果蔬品质高光谱成像无损检测研究进展[J]. 激光与红外 2010(06)

    标签:;  ;  ;  ;  ;  ;  

    高光谱成像结合BP网络无损检测李子的硬度
    下载Doc文档

    猜你喜欢