三次对称多项式x3+y3+z3-3xyz的因式分解及其应用(Ⅰ)

三次对称多项式x3+y3+z3-3xyz的因式分解及其应用(Ⅰ)

论文摘要

从三次对称多项式x3+y3+z3-3xyz的因式分解出发,给出这个分解在恒等式证明、代数式简化、3次方程求根等方面的直接应用.

论文目录

  • 1 p (x, y, z) 的基本性质
  • 2在因式分解和3次开方化简中的应用
  • 3在证明恒等式方面的应用
  • 4在解方程 (组) 中的应用
  • 5杂题
  • 文章来源

    类型: 期刊论文

    作者: 刘合国,徐行忠,雒晓良

    关键词: 对称多项式,因式分解,次方程

    来源: 湖北大学学报(自然科学版) 2019年02期

    年度: 2019

    分类: 基础科学

    专业: 数学

    单位: 湖北大学数学与统计学学院

    基金: 湖北省高等学校优秀中青年科技创新团队计划(T201601),湖北省新世纪高层次人才工程专项基金,湖北大学精品资源共享课《高等代数》资助

    分类号: O174.14

    页码: 182-191+197

    总页数: 11

    文件大小: 230K

    下载量: 199

    相关论文文献

    • [1].齐次对称多项式的半正定性[J]. 数学的实践与认识 2009(12)
    • [2].局部对称线性空间再探究[J]. 佛山科学技术学院学报(自然科学版) 2013(04)
    • [3].基于二元对称多项式的公平秘密共享方案[J]. 计算机工程与应用 2016(13)
    • [4].3元n次对称多项式的平方型分拆及其他[J]. 佛山科学技术学院学报(自然科学版) 2010(04)
    • [5].一种基于路由驱动的三元对称多项式密钥管理方案[J]. 计算机应用与软件 2015(02)
    • [6].获得一类三角恒等式的新方法[J]. 高等数学研究 2015(01)
    • [7].局部对称多项式线性空间初探[J]. 广东教育学院学报 2008(05)
    • [8].基于对称多项式的无线传感器网络密钥管理方案[J]. 通信技术 2019(05)
    • [9].对称多项式及其在初等代数中的一些应用[J]. 网络财富 2010(21)
    • [10].n元对称多项式的对称核及应用[J]. 系统科学与数学 2010(11)
    • [11].三次对称多项式x~3+y~3+z~3-3xyz的因式分解及其应用(Ⅱ)[J]. 湖北大学学报(自然科学版) 2019(06)
    • [12].基于二元对称多项式的WSN密钥管理方案[J]. 计算机工程 2010(16)
    • [13].Selmer多项式不可约性的一个新证明[J]. 河池学院学报 2010(05)
    • [14].一类积分不等式的机器判定[J]. 中国科学:信息科学 2011(01)
    • [15].Mathematica在多项式中的应用[J]. 潍坊学院学报 2013(04)
    • [16].一类对称多项式在微分几何中的应用[J]. 数学杂志 2015(06)
    • [17].代数学中对称多项式的证明[J]. 宜宾学院学报 2010(06)
    • [18].多项式的一般表示式及其应用[J]. 广东教育学院学报 2010(03)
    • [19].巧用对称 简化解题[J]. 福建中学数学 2011(07)
    • [20].用差分代换方法估算最佳值及其他[J]. 汕头大学学报(自然科学版) 2011(01)
    • [21].关于对称多项式的构造及其应用[J]. 汕头大学学报(自然科学版) 2010(04)
    • [22].关于牛顿恒等式的归纳证明[J]. 金陵科技学院学报 2014(03)
    • [23].n元m阶方阵的k次方幂和的一种新算法[J]. 三峡大学学报(自然科学版) 2011(04)
    • [24].WSN中基于多项式的安全密钥建立方案[J]. 计算机工程 2011(03)
    • [25].二元对称多项式硬件加密技术研究[J]. 通信技术 2015(08)
    • [26].基于多项式无线传感器网络密钥预分配方案[J]. 计算机与数字工程 2014(11)
    • [27].运用对称式智取二次根式的求值问题[J]. 学生之友(中考月刊) 2013(09)
    • [28].轮换对称多项式通式的构造及初等轮换式的自动发现[J]. 佛山科学技术学院学报(自然科学版) 2011(01)
    • [29].无线传感器网络密钥预分配方案能耗分析[J]. 通信技术 2015(12)
    • [30].利用一个三次恒等式解题[J]. 中学生数学 2008(09)

    标签:;  ;  ;  

    三次对称多项式x3+y3+z3-3xyz的因式分解及其应用(Ⅰ)
    下载Doc文档

    猜你喜欢