二维分数阶扩散方程的最小二乘混合有限元方法

二维分数阶扩散方程的最小二乘混合有限元方法

论文摘要

本文主要考虑如下2-β阶二维扩散方程其中,=[0,1]×[0,1],0<β<1,p(x,y)表示扩散浓度,f(x,y)表示源项,介质的扩散系数假定为常数1.▽表示梯度算子,▽1-β·表示分数阶散度算子.为满足工程实践中的需要,一个理想的数值模拟方法应该同时对未知函数及其通量做出高精度的逼近.然而我们发现,基于差分框架的数值方法仅能给出对未知函数的模拟,而基于有限元框架的数值方法大都限于对一维分数阶问题的讨论,对应用更为广泛二维分数阶扩散问题的数值方法与相应的数值分析理论尚不多见.在本文中,我们借鉴算子分裂思想,通过引入扩散通量u=-▽p,将二维分数阶扩散方程分解为两个低阶方程构成的方程组.然后,我们利用最小二乘技术,建立相应的极小问题,得到基于最小二乘框架的混合变分格式,并且证明了变分格式与极小问题的等价性.为了证明变分格式解的存在性,我们选择合适的Sobolev空间,并利用Lax-Milgram引理进行证明.我们选择空间H0(Ω作为解p的允许空间,因为空间H01(Ω)具有良好的性质,即空间H01(Ω)中范数与半范数是等价的,Lax-Milgra引理要求的强制性与连续性都得到满足,从而解p是存在的.对于扩散通量u,我们尝试利用分数阶散度空间H1-β(div;Ω)作为其存在空间,但在论证过程中,我们发现空间H1-β(div;Ω)并不具备与空间H01(Ω)类似的良好性质,即空间H1-β(div;Ω)中范数与半范数是不等价的,这为Lax-Milgram引理的使用带来极大的困难.为了解决这个问题,我们引入分数阶散度算子的核空间Ker{▽1-β.},结合分数阶散度空间,构造了分数阶商空间,并且证明了在分数阶商空间中定义的范数与半范数是等价的.因此,我们选择分数阶商空间作为扩散通量u的允许空间,并证明了其存在性.然后,我们分别利用最低次Ravi-rt-Thomas有限元空间与双线性有限元空间对扩散通量u和解p进行逼近,给出了最小二乘混合有限元离散格式,同时证明了离散解的存在唯一性.最后,我们利用数值实验说明最小二乘混合有限元方法的有效性.在进行数值实验的过程中,因为分数阶导数算子的非局部性,所以导致系数矩阵是非稀疏的矩阵,这为矩阵的计算和方程组的求解带来了极大的困难.为了解决这个问题,我们利用矩阵分块的思想和分数阶散度算子的性质,将系数矩阵分解为四个结构相对简单的分块矩阵,证明了分块矩阵的对称性质,这为矩阵的计算提供了便利,降低了计算的难度。

论文目录

  • 中文摘要
  • 英文摘要
  • 第一章 绪论
  • 第二章 二维分数阶扩散方程与相关引理
  •   2.1 二维分数阶扩散方程
  •   2.2 相关引理
  • 第三章 分数阶空间理论
  •   3.1 引言
  •   3.2 分数阶散度空间与商空间
  • 第四章 二维分数阶扩散方程的最小二乘混合有限元方法
  •   4.1 引言
  •   4.2 最小二乘混合变分格式
  •   4.3 最小二乘混合有限元离散格式
  •   4.4 矩阵结构分析
  •   4.5 数值实验
  • 第五章 结语
  • 参考文献
  • 攻读学位期间发表的学术论文
  • 致谢
  • 文章来源

    类型: 硕士论文

    作者: 张洪光

    导师: 陈焕贞

    关键词: 二维分数阶扩散方程,分数阶空间,分数阶商空间,算子分裂,最小二乘,变分形式,混合有限元,数值实验

    来源: 山东师范大学

    年度: 2019

    分类: 基础科学

    专业: 数学,数学

    单位: 山东师范大学

    分类号: O241.82

    总页数: 59

    文件大小: 1997K

    下载量: 28

    相关论文文献

    • [1].异结构分数阶混沌系统的柔性变结构同步控制[J]. 扬州大学学报(自然科学版) 2019(04)
    • [2].分数阶复合控制在光电稳定平台中的应用[J]. 电光与控制 2020(01)
    • [3].直线一级倒立摆分数阶控制器设计及仿真[J]. 控制工程 2020(01)
    • [4].基于状态空间平均法的分数阶逆变器建模与分析[J]. 电气应用 2020(01)
    • [5].变指数基尔霍夫型分数阶方程解的存在性[J]. 山东大学学报(理学版) 2020(06)
    • [6].用改进的分数阶最速下降法训练分数阶全局最优反向传播机(英文)[J]. Frontiers of Information Technology & Electronic Engineering 2020(06)
    • [7].基于粒子群优化算法的等比例分数阶系统建模[J]. 自动化与仪表 2020(06)
    • [8].基于分数阶字典的间歇采样转发干扰自适应抑制算法[J]. 系统工程与电子技术 2020(07)
    • [9].基于ESPM的DCM模式下的PFC-BOOST DC/DC变换器分析[J]. 电气应用 2020(08)
    • [10].具不同分数阶扩散趋化模型的衰减估计[J]. 数学年刊A辑(中文版) 2020(02)
    • [11].分数阶混沌系统的同步研究及电路实现[J]. 西北师范大学学报(自然科学版) 2019(06)
    • [12].基于状态观测器的分数阶混沌系统的同步[J]. 电子设计工程 2019(22)
    • [13].分数阶混沌系统的间歇控制同步[J]. 重庆工商大学学报(自然科学版) 2018(04)
    • [14].一类分数阶混沌系统的自适应滑模同步[J]. 扬州大学学报(自然科学版) 2016(03)
    • [15].一类分数阶混沌系统的投影同步[J]. 河南科学 2016(11)
    • [16].标量控制下的分数阶Lü系统的参数辨识和自适应同步[J]. 河南理工大学学报(自然科学版) 2017(01)
    • [17].分数阶电路阶跃响应特性研究[J]. 电子测试 2016(24)
    • [18].分数阶同步发电机系统的混沌同步[J]. 河南科学 2017(03)
    • [19].一类不确定分数阶混沌系统同步的自适应滑模控制方法[J]. 动力学与控制学报 2017(02)
    • [20].分数阶Klein-Gordon-Schr?dinger方程弱解的存在性[J]. 佛山科学技术学院学报(自然科学版) 2017(03)
    • [21].非线性分数阶动力系统的控制研究[J]. 教育现代化 2017(22)
    • [22].基于模糊神经网络的分数阶混沌系统的同步研究[J]. 湖南工程学院学报(自然科学版) 2017(03)
    • [23].分数阶参数不确定混沌系统的自适应同步[J]. 河北师范大学学报(自然科学版) 2016(02)
    • [24].带分数阶自相容源的分数阶超Broer-Kaup-Kupershmidt族[J]. 数学进展 2016(03)
    • [25].一类分数阶混沌系统的滑模控制[J]. 机械制造与自动化 2016(03)
    • [26].分数阶超Broer-Kaup-Kupershmidt族及其非线性可积耦合(英文)[J]. 工程数学学报 2016(04)
    • [27].基于自适应模糊控制的分数阶混沌系统同步[J]. 物理学报 2016(17)
    • [28].一类分数阶复杂网络混沌系统的投影同步[J]. 动力学与控制学报 2016(04)
    • [29].基于分数阶控制器的分数阶混沌系统同步[J]. 兰州理工大学学报 2016(04)
    • [30].滑模控制的时滞分数阶金融系统混沌同步[J]. 深圳大学学报(理工版) 2014(06)

    标签:;  ;  ;  ;  ;  ;  ;  ;  

    二维分数阶扩散方程的最小二乘混合有限元方法
    下载Doc文档

    猜你喜欢