基于时滞分割技术的时滞神经网络系统时滞相依全局稳定性分析

基于时滞分割技术的时滞神经网络系统时滞相依全局稳定性分析

论文摘要

通过构造一个新的增广Lyapunov-Krasovskii泛函,利用时滞分割技术并结合自由权矩阵、Jensen积分不等式,得到一个时滞神经网络系统时滞相依全局渐近稳定新判据。该判据以LMI的形式给出,便于计算和验证。数值实例表明,文章结果改进了相关文献结论,具有更低的保守性。

论文目录

  • 1 问题描述
  • 2 主要结果
  • 3 数值实例
  • 4 结语
  • 文章来源

    类型: 期刊论文

    作者: 毛凯,孙校书,杨树杰,刘丹

    关键词: 时滞神经网络系统,全局渐近稳定,时滞分割技术,自由权矩阵,积分不等式

    来源: 海军航空工程学院学报 2019年02期

    年度: 2019

    分类: 工程科技Ⅱ辑,基础科学,信息科技

    专业: 数学,自动化技术

    单位: 海军航空大学

    基金: 国家自然科学基金资助项目(11802338)

    分类号: TP183;O175

    页码: 239-244

    总页数: 6

    文件大小: 820K

    下载量: 35

    相关论文文献

    • [1].一类随机惯性时滞神经网络的稳定性[J]. 高校应用数学学报A辑 2020(01)
    • [2].事件触发下混合时滞神经网络的状态估计[J]. 应用数学和力学 2020(08)
    • [3].一类随机高阶变时滞神经网络的指数稳定性[J]. 数学的实践与认识 2020(12)
    • [4].一类具有多时滞神经网络的渐近同步[J]. 宜宾学院学报 2017(06)
    • [5].混合时滞神经网络的稳定性分析[J]. 课程教育研究 2016(12)
    • [6].一类两神经元时滞神经网络分岔周期解[J]. 呼伦贝尔学院学报 2018(03)
    • [7].时滞神经网络双周期间歇控制滞后同步[J]. 计算机工程与应用 2016(15)
    • [8].时滞神经网络的改进稳定判据[J]. 广西大学学报(自然科学版) 2020(03)
    • [9].基于忆阻时滞神经网络的耗散研究[J]. 工程科学与技术 2017(03)
    • [10].复域时滞神经网络的渐近稳定(英文)[J]. 重庆师范大学学报(自然科学版) 2016(01)
    • [11].具有分布式时滞神经网络系统的全局稳定性分析及平衡点位置估计[J]. 延边大学学报(自然科学版) 2013(02)
    • [12].具脉冲马尔可夫跳中立型时滞神经网络事件触发状态估计[J]. 成都大学学报(自然科学版) 2019(04)
    • [13].无穷分布时滞神经网络的全局指数稳定性(英文)[J]. 新疆大学学报(自然科学版) 2014(02)
    • [14].一类典型的无时滞神经网络通过优化控制实现有限时间混合外同步[J]. 湖北民族学院学报(自然科学版) 2017(02)
    • [15].基于事件触发和量化的时滞神经网络系统状态估计[J]. 中国科学:信息科学 2016(11)
    • [16].一类时滞神经网络系统的概周期解[J]. 玉林师范学院学报 2011(02)
    • [17].离散时刻Cohen-Grossberg时滞神经网络周期解的存在性与稳定性[J]. 西北师范大学学报(自然科学版) 2009(02)
    • [18].基于时滞反馈控制的混沌时滞神经网络的自适应同步(英文)[J]. 应用数学与计算数学学报 2017(04)
    • [19].不确定时滞神经网络的无源性分析[J]. 广东工业大学学报 2017(01)
    • [20].混合时滞神经网络平衡点的全局稳定性[J]. 华中师范大学学报(自然科学版) 2012(03)
    • [21].三元中立型时滞神经网络的稳定性分析[J]. 黑龙江大学自然科学学报 2011(03)
    • [22].变时滞神经网络的时滞相关全局渐近稳定新判据[J]. 山东大学学报(工学版) 2010(04)
    • [23].一类二元时滞神经网络模型同步解的收敛性[J]. 河南科学 2008(12)
    • [24].分数阶复值时滞神经网络的准一致同步[J]. 安庆师范大学学报(自然科学版) 2020(03)
    • [25].随机变时滞神经网络的全局渐近稳定性[J]. 通信技术 2009(06)
    • [26].一类变系数混合时滞神经网络周期解的存在性和指数稳定性(英文)[J]. 应用数学 2009(04)
    • [27].一类具分布时滞神经网络的全局指数稳定性(英文)[J]. 应用数学 2009(04)
    • [28].基于积分滑模控制的非理想变时滞神经网络有限时间同步[J]. 控制与决策 2019(07)
    • [29].基于忆阻的时滞神经网络的全局稳定性[J]. 应用数学和力学 2013(07)
    • [30].一类二元时滞神经网络模型同步解的周期性[J]. 湖南科技学院学报 2011(12)

    标签:;  ;  ;  ;  ;  

    基于时滞分割技术的时滞神经网络系统时滞相依全局稳定性分析
    下载Doc文档

    猜你喜欢