导读:本文包含了放电特性论文开题报告文献综述、选题提纲参考文献及外文文献翻译,主要关键词:脉冲,电压,发射光谱,等离子体,特性,密度,局部。
放电特性论文文献综述
李熙宁,汲胜昌,崔彦捷,潘亮,祝令瑜[1](2019)在《交直流复合电压中直流分量对油纸绝缘针板缺陷局部放电特性的影响》一文中研究指出换流变压器阀侧绕组绝缘承受交直流复合电压的作用,其中直流电压分量对油纸绝缘的影响相比纯交流电压更为复杂。针对复合电压中直流分量对极不均匀电场下油纸绝缘局部放电特性的影响,采用基于脉冲电流法的局部放电测量系统,着重对比了不同直流分量交直流复合电压下油纸绝缘针板缺陷在起始放电和预击穿阶段的局部放电特性。实验结果表明:直流电场作用下的空间电荷积聚形成的反向电场使得起始放电电压和击穿电压随着直流分量的升高而逐渐增大;在整个局部放电发展过程中,直流分量增加时放电脉冲重复率与放电量会降低,而平均脉冲等效时间和等效频率与直流分量间没有表现出直接关系;随着直流分量的增加,局部放电分布相位开始向正半周期移动。实验结果可作为含不同直流分量交直流复合电压下局部放电模式识别的参考。(本文来源于《高电压技术》期刊2019年12期)
程露莹,李学宝,马浩,李隐飞,卢铁兵[2](2019)在《直流单点电晕放电无线电干扰和可听噪声时域关联特性分析》一文中研究指出当导线周围发生电晕放电时,会伴随空间电荷的运动,进而产生无线电干扰和可听噪声等电晕放电效应。本文基于实验室搭建的可听噪声和无线电干扰时域测量平台,实现了对正极性单点电晕放电产生的可听噪声和无线电干扰时域波形的同时采集;然后借助可听噪声和无线电干扰脉冲在时域上的一一对应关系,对测量信号的背景干扰进行剔除;最后对去噪后的可听噪声及无线电干扰时域波形参数进行了分析,获得了可听噪声和无线电干扰脉冲峰值及持续时间的关联关系。分析结果表明:提出的可听噪声脉冲波形模拟方法可以只测量无线电干扰波形就得到可听噪声脉冲波形。对比模拟波形与测量波形,得到的总声压级误差小于3d B(A),验证了方法的有效性。研究结果为电晕放电可听噪声的测试和预测提供了一种新的思路。(本文来源于《高电压技术》期刊2019年12期)
许慧敏,张文良,贾鹏英,陈俊宇,李雪辰[3](2019)在《大气压氩气周期性突起的放电特性及其产生机制研究》一文中研究指出大气压等离子体射流可以在空气环境中产生等离子体羽.与通常产生的锥状等离子体羽不同,利用低频偏置正弦电压激励大气压氩气等离子体射流,等离子体羽呈现周期性突起.利用电学、光学及光谱学手段对突起状等离子体羽的放电特性及其形成机制进行了研究.结果表明,等离子体羽长度随着气体流量增大而增大.放电的波形表明每一个电压周期存在一次放电,且它出现在电压的负半周期.通过高速影像发现,突起状等离子体羽对应沿着气流传播的负流光.射流喷口附近存在周期性的强放电,它为下游提供了空间规律性分布的活性粒子.该活性粒子能增强流光的传播,表现为等离子体子弹的直径增大,因此形成空间周期性的突起.利用光学发射谱,测量了电子激发温度的空间分布及平均电子激发温度随着气体流量的变化关系,并对这种变化趋势进行了定性解释.(本文来源于《中国科学:物理学 力学 天文学》期刊2019年12期)
杨兰均,马江波,黄东,李刚,姚远[4](2019)在《高压合成回路用放电开关等离子体触发装置特性》一文中研究指出高压合成回路要求开关工作在极低工作系数下,常用的开关类型为大气下气体火花开关。为解决气体火花开关在极低工作系数下的触发问题,本文将毛细管放电等离子体喷射技术应用于高压合成回路点火开关。首先采用高速摄影仪拍摄了毛细管放电等离子体喷射形态,然后对不同工作系数下气体火花开关的延时及其分散性进行了测量,最后在实际运行试验中对触发特性进行了验证。实验结果表明:毛细管喷射等离子体沿电极轴向进入电极间隙,形成一条电导率远高于空气的等离子体通道,从而使开关电极导通击穿。等离子体喷射触发气体火花开关导通延时和延时分散性主要由等离子体形态及贯穿过程决定。电极间距为130 mm、工作系数为50%条件下,开关导通延时为114μs,分散性为±10μs。实际运行结果表明,等离子体喷射触发气体火花开关能在极低的工作系数下可靠触发导通,成功完成合成试验。(本文来源于《高电压技术》期刊2019年11期)
郑殿春,沈湘东,郑秋平,陈春天,赵大伟[5](2019)在《电极介质覆盖SF_6间隙纳秒脉冲电压放电特性研究》一文中研究指出本文引入流体力学理论的对流-扩散机制,建立以自洽流体力学模型为基础的SF_6气体电极介质覆盖下的纳秒脉冲电压下的放电数学模型。采用MacCormack二阶精度反耗散的稳定格式,既顾了计算精度、计算量和收敛速度的要求,又克服放电过程间隙参量奇异性对计算结果的影响。同时计算分析了0. 4 MPa,纳秒脉冲电压上升沿20 ns条件下,幅值分别为10、14、19和25 kV,以及幅值15和25 kV条件下的20、30和40 ns下的SF_6气体电极介质覆盖下的纳秒脉冲放电特性,以及放电过程带电粒子的运动行为与间隙电场影响机制,获得了脉冲电压幅值和上升沿对其放电过程的位移电流、传导电流以及总电流之间制约关系。研究结果对拓宽SF_6应用领域具有参考价值。(本文来源于《电机与控制学报》期刊2019年11期)
吴厚朴,田钦文,田修波,巩春志[6](2019)在《新型双极性高功率脉冲磁控溅射电源及放电特性研究》一文中研究指出独立设计研制了新型两段式双极性脉冲高功率脉冲磁控溅射电源,本电源具备3种工作模式:(1)传统高功率脉冲磁控溅射(HiPIMS)放电模式,(2)双极性脉冲高功率脉冲磁控溅射(BP-HiPIMS)放电模式和(3)两段式双极性脉冲高功率脉冲磁控溅射(DBP-HiPIMS)放电模式。特别是新提出的第叁种工作模式,两段式双极性脉冲较传统的单段双极性脉冲具有较大的优势。本文研究了在传统BP-HiPIMS和新DBP-HiPIMS条件下,正向脉冲对Cr靶在Ar气气氛下的放电特性的影响。研究发现:随着正向脉冲电压的增加,BP-HiPIMS和DBP-HiPIMS基体净离子平均电流均明显提高,且相比传统BP-HiPIMS模式,新型DBP-HiPIMS放电模式在不同正向脉冲电压时均具有更高的基体净离子平均电流。正向脉冲电压为100V时,在基体偏压为0V和60V条件下,DBP-HiPIMS模式的基体净离子平均电流较传统BP-HiPIMS模式分别提高47.0%和30.3%。表明新型DBP-HiPIMS放电模式能够进一步提高正向脉冲对离子的推动加速作用,这将有利于膜层质量的提高。(本文来源于《真空》期刊2019年06期)
何寿杰,包慧玲,哈静,赵凯悦,渠宇霄[7](2019)在《空气中空心阴极不同放电模式下的发光特性》一文中研究指出为了进一步揭示空心阴极放电中放电模式的转换机制,特别是空心阴极放电过程中自脉冲的形成机理,利用柱型空心阴极放电结构,在空气环境下研究了放电处于不同模式时的发光特性。测量得到了不同放电模式下的伏安特性曲线、放电发光图像、自脉冲阶段的脉冲波形等。实验结果表明随着放电电流的增加放电分为汤生放电模式、自脉冲放电模式、正常辉光放电模式和反常辉光放电模式。虽然所用电源为直流电源,但在自脉冲放电阶段电流和电压随时间呈周期性变化。实验结果表明在不同的放电模式下具有不同的发光特性。在由汤生放电转换为自脉冲放电模式和由自脉冲模式转换为正常辉光放电模式过程中,放电腔的径向中心处和轴向孔口附近均存在光强的突变。实验同时在200~700 nm范围内测量得到了不同电流时的发射光谱。结果表明发射光谱主要集中在330~450 nm,主要包括氮分子的第二正带系(C~3Π_u→B~3Π_g)和氮分子离子的第一负带系(B~2Σ~+_u→X~2Σ~+_g)。其中氮分子离子第一负带系具有较强的发射光谱。由于B~2Σ~+_u激发电位较高,因此该谱带较强发射光谱的存在表明空心阴极放电较其他放电形式更容易获得高激发态粒子和高能量电子。在650~700 nm附近存在一弱的发光谱带,主要为氮分子的第一正带发射谱(B~3Π_g→A~3Σ~+_u)。在此基础上根据双原子光谱发射理论,结合氮分子第二正带系的叁组顺序组带:Δν=-1,-2和-3,利用玻尔兹曼斜率法计算得到了不同放电模式下氮气的分子振动温度。结果表明在实验电流范围内分子振动温度在3 300 K左右,随着电流的增加而升高,并且在自脉冲消失时存在一突变迅速增强。由于电子能量、电子密度与分子振动温度密切相关,因此该结果也表明随着放电电流的增加电子平均能量和电子密度不断增加,当脉冲消失时,电子平均能量和电子密度出现跃变升高。最后,对空心阴极放电中自脉冲的形成机理进行了讨论,结果表明自脉冲放电源于放电模式的转换。(本文来源于《光谱学与光谱分析》期刊2019年11期)
曲婉菊,张天,姜瀚,乔双[8](2019)在《中子管射频离子源放电特性仿真研究》一文中研究指出国外射频离子源中子管的中子产额已经达到10~(14) n/s,明显优于潘宁源中子管。为了深入了解用于中子管射频离子源的放电特性,从射频感应耦合等离子体的放电原理入手,建立用于氢气放电模拟研究的理论模型。设计中子管射频离子源几何结构,运用麦克斯韦方程组在理论上推导了等离子体放电过程中影响粒子密度的因素。结合Comsol软件中的二维轴对称的电感耦合等离子体模型,采用单一变量法,通过仿真实验得到了线圈匝间距、线圈匝数、线圈直径、线圈功率和放电气压等参数对H~+密度分布和大小的影响。总结出H~+在不同参数下的变化规律,得到了一些有价值的结论,为优化中子管射频离子源的实验参数和结构设计提供重要依据。(本文来源于《真空科学与技术学报》期刊2019年11期)
马馨逸,董明,王思云,李阳,王豪宇[9](2019)在《纳米改性变压器油工频局部放电特性研究》一文中研究指出以不同浓度的TiO_2和SiO_2纳米改性变压器油为研究对象,通过光电检测法采集局部放电脉冲信号,探究纳米颗粒的添加对变压器油局部放电特性的影响。结果表明:纳米颗粒通过增加油中浅陷阱密度、畸变电场分布,可以有效降低载流子迁移率,从而抑制放电的发展。加入纳米颗粒后,变压器油的击穿电压和局部放电起始电压都有所提高,局放脉冲上升沿变化率降低。不同种类纳米颗粒对放电的不同阶段抑制效果不同,SiO_2纳米颗粒对放电的起始发展阶段抑制程度更大,TiO_2纳米颗粒对放电的预击穿阶段抑制效果更佳。(本文来源于《绝缘材料》期刊2019年11期)
胡小博,李坤,陈荣,郭明邦,龚俊[10](2019)在《天然酯绝缘油在油纸界面放电故障条件下的分解产气特性研究》一文中研究指出选取菜籽基天然酯绝缘油与矿物绝缘油及两种绝缘油的油浸纸板为研究对象,开展纯油击穿与油纸沿面闪络两种类型的放电故障试验,通过油中溶解气体分析方法研究故障后两种绝缘油产生的油中溶解气体类型与含量,并对比分析两种绝缘油产气特性差异及油纸界面对产气特性的影响。结果表明:在击穿类型放电故障条件下,两种绝缘油产生的溶解故障特征气体类型相同,均为CH_4、C_2H4_、C_2H_6、C_2H_2、H_2、CO、CO_2;相同故障条件下,天然酯绝缘油相较于矿物绝缘油会产生更多的CO;当放电故障发生在油纸界面处时,两种绝缘油中的故障产气量增多,且CO的含量占比上升。(本文来源于《绝缘材料》期刊2019年11期)
放电特性论文开题报告
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
当导线周围发生电晕放电时,会伴随空间电荷的运动,进而产生无线电干扰和可听噪声等电晕放电效应。本文基于实验室搭建的可听噪声和无线电干扰时域测量平台,实现了对正极性单点电晕放电产生的可听噪声和无线电干扰时域波形的同时采集;然后借助可听噪声和无线电干扰脉冲在时域上的一一对应关系,对测量信号的背景干扰进行剔除;最后对去噪后的可听噪声及无线电干扰时域波形参数进行了分析,获得了可听噪声和无线电干扰脉冲峰值及持续时间的关联关系。分析结果表明:提出的可听噪声脉冲波形模拟方法可以只测量无线电干扰波形就得到可听噪声脉冲波形。对比模拟波形与测量波形,得到的总声压级误差小于3d B(A),验证了方法的有效性。研究结果为电晕放电可听噪声的测试和预测提供了一种新的思路。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
放电特性论文参考文献
[1].李熙宁,汲胜昌,崔彦捷,潘亮,祝令瑜.交直流复合电压中直流分量对油纸绝缘针板缺陷局部放电特性的影响[J].高电压技术.2019
[2].程露莹,李学宝,马浩,李隐飞,卢铁兵.直流单点电晕放电无线电干扰和可听噪声时域关联特性分析[J].高电压技术.2019
[3].许慧敏,张文良,贾鹏英,陈俊宇,李雪辰.大气压氩气周期性突起的放电特性及其产生机制研究[J].中国科学:物理学力学天文学.2019
[4].杨兰均,马江波,黄东,李刚,姚远.高压合成回路用放电开关等离子体触发装置特性[J].高电压技术.2019
[5].郑殿春,沈湘东,郑秋平,陈春天,赵大伟.电极介质覆盖SF_6间隙纳秒脉冲电压放电特性研究[J].电机与控制学报.2019
[6].吴厚朴,田钦文,田修波,巩春志.新型双极性高功率脉冲磁控溅射电源及放电特性研究[J].真空.2019
[7].何寿杰,包慧玲,哈静,赵凯悦,渠宇霄.空气中空心阴极不同放电模式下的发光特性[J].光谱学与光谱分析.2019
[8].曲婉菊,张天,姜瀚,乔双.中子管射频离子源放电特性仿真研究[J].真空科学与技术学报.2019
[9].马馨逸,董明,王思云,李阳,王豪宇.纳米改性变压器油工频局部放电特性研究[J].绝缘材料.2019
[10].胡小博,李坤,陈荣,郭明邦,龚俊.天然酯绝缘油在油纸界面放电故障条件下的分解产气特性研究[J].绝缘材料.2019