基于Adaboost的填充式防护结构超高速撞击损伤预测

基于Adaboost的填充式防护结构超高速撞击损伤预测

论文摘要

填充式防护结构的显式弹道极限方程在对弹丸进行超高速撞击损伤预测时,由于填充材料、填充方式的不同,会导致预测结果与实测数据存在一定偏差。对此,采用机器学习方式将该问题转化为二分类问题,以碰撞过程中的弹丸撞击参数、防护结构参数作为分类特征,构建了基于Adaboost的填充式防护结构超高速撞击损伤预测模型。该模型以分类回归树(CART)作为弱分类器,通过对一系列弱分类器的加权组合生成强分类器,并通过对训练样本的循环使用,实现了小样本集下的撞击损伤预测。实验结果表明,建立的Adaboost预测模型对填充式防护结构的超高速撞击损伤具有良好的预测效果,总体预测率与安全预测率相比于NASA的弹道极限方程均提高了14. 3%,具有更强的通用性。通过不同训练样本规模下的交叉检验,证明了该模型具有良好的鲁棒性与准确性。

论文目录

  • 1 NASA填充式防护结构弹道极限方程
  • 2 NASA弹道极限方程的预测效果分析
  • 3基于Adaboost的超高速撞击损伤预测模型
  •   3.1 Adaboost预测模型的适用性分析
  •   3.2 Adaboost预测模型的搭建与测试
  • 4基于Adaboost的超高速撞击损伤预测效果分析
  •   4.1预测效果检验
  •   4.2鲁棒性检验
  • 5结论
  • 文章来源

    类型: 期刊论文

    作者: 丁文哲,李新洪,杨虹

    关键词: 填充式防护结构,损伤研究,算法,总体预测率,安全预测率

    来源: 北京航空航天大学学报 2019年01期

    年度: 2019

    分类: 工程科技Ⅱ辑

    专业: 航空航天科学与工程

    单位: 航天工程大学研究生院,航天工程大学宇航科学与技术系

    分类号: V445.1

    DOI: 10.13700/j.bh.1001-5965.2018.0216

    页码: 149-158

    总页数: 10

    文件大小: 432K

    下载量: 91

    相关论文文献

    • [1].基于多步校正的改进AdaBoost算法[J]. 清华大学学报(自然科学版)网络.预览 2008(10)
    • [2].基于AdaBoost级联框架的舌色分类[J]. 北京生物医学工程 2020(01)
    • [3].基于CEEMDAN+RF+AdaBoost的短期负荷预测[J]. 水电能源科学 2020(04)
    • [4].基于AdaBoost算法的炉芯温度预测模型[J]. 钢铁研究学报 2020(05)
    • [5].基于iForest-Adaboost的核电厂一回路故障诊断技术研究[J]. 核动力工程 2020(03)
    • [6].基于AdaBoost的短期边际电价预测模型[J]. 计算机与数字工程 2020(02)
    • [7].基于AdaBoost的雷达剩余杂波抑制方法[J]. 电光与控制 2020(06)
    • [8].基于AdaBoost集成学习的窃电检测研究[J]. 电力系统保护与控制 2020(19)
    • [9].基于混合采样AdaBoost的地中海贫血数据诊断研究[J]. 数据通信 2020(05)
    • [10].基于KELM-AdaBoost方法的短期风电功率预测(英文)[J]. 控制工程 2019(03)
    • [11].Adaboost-SVM多因子选股模型[J]. 经济研究导刊 2019(10)
    • [12].一种改进的Adaboost-BP算法在手写数字识别中的研究[J]. 大理大学学报 2019(06)
    • [13].一种快速AdaBoost.RT集成算法时间序列预测研究[J]. 电子测量与仪器学报 2019(06)
    • [14].一种加入动态权重的AdaBoost算法[J]. 重庆师范大学学报(自然科学版) 2019(05)
    • [15].基于改进的AdaBoost算法的中压配电网断线不接地故障检测[J]. 电测与仪表 2019(16)
    • [16].基于Adaboost算法的人脸检测的研究[J]. 中外企业家 2019(26)
    • [17].基于Adaboost.RT算法的隧道沉降时间序列预测研究[J]. 中国计量大学学报 2019(03)
    • [18].一种改进的BP-AdaBoost算法及应用研究[J]. 现代电子技术 2019(19)
    • [19].AdaBoost的多样性分析及改进[J]. 计算机应用 2018(03)
    • [20].基于改进Real AdaBoost算法的软件可靠性预测[J]. 空军工程大学学报(自然科学版) 2018(01)
    • [21].一种基于聚类和AdaBoost的自适应集成算法[J]. 吉林大学学报(理学版) 2018(04)
    • [22].基于Adaboost算法的人眼检测技术在路考系统中的应用[J]. 汽车与安全 2016(04)
    • [23].基于改进Adaboost算法的人脸检测方法[J]. 科技经济导刊 2018(18)
    • [24].基于Adaboost和回归树集合技术的疲劳识别研究[J]. 汕头大学学报(自然科学版) 2017(02)
    • [25].基于AdaBoost算法的在线连续极限学习机集成算法[J]. 软件导刊 2017(04)
    • [26].基于Adaboost的改进多元线性回归算法中长期负荷预测[J]. 太原理工大学学报 2017(05)
    • [27].Adaboost人眼定位方法改进与实现[J]. 大连交通大学学报 2017(05)
    • [28].基于SVM-Adaboost裂缝图像分类方法研究[J]. 公路交通科技 2017(11)
    • [29].基于Adaboost算法的主客观句分类[J]. 长春大学学报 2015(12)
    • [30].基于AdaBoost的极限学习机集成算法[J]. 软件导刊 2016(04)

    标签:;  ;  ;  ;  ;  

    基于Adaboost的填充式防护结构超高速撞击损伤预测
    下载Doc文档

    猜你喜欢