Dirac半金属β-PbO2及Dirac自旋半金属CrO2的第一性原理研究

Dirac半金属β-PbO2及Dirac自旋半金属CrO2的第一性原理研究

论文摘要

拓扑半金属是一类不同于以往的全新拓扑量子态,它是近年来凝聚态物理和材料领域的研究新热点之一。Dirac半金属的电子结构主要表现为费米能级附近有四重简并的能带交点,这样的能带交点通常是由双重简并的线性能带相交形成的。对于自旋极化系统,Dirac自旋半金属是一个自旋通道表现为具有Dirac锥的半金属性质,而另外一个自旋通道表现为绝缘体或者半导体性质。本文,主要研究并发现了两类拓扑半金属材料:三维Dirac拓扑半金属β-PbO2和二维Dirac自旋半金属CrO2。主要研究成果如下:1、我们在实验上已制备的材料中发现了一类三维拓扑半金属β-PbO2。在不考虑自旋轨道耦合时,β-PbO2表现为受时间反演和空间反演保护的node-line半金属,其(010)面的局域态密度中清晰可见的“鼓膜状”表面态证实了此时的拓扑性;但系统在考虑自旋轨道耦合作用后,我们发现除了沿Γ-Z高对称线的两个点以外,node-line上的其他能带交点都打开了带隙,系统也由node-line半金属转变成了Dirac半金属,而且其Dirac点是受C4晶格对称保护的,随后通过计算此时的半无限边缘的表面态和费米弧,证明了β-PbO2中Dirac锥的拓扑性质。更值得一提的是,该体系表面态的自旋具有螺旋状的结构,这与拓扑绝缘体是类似的。除此之外,还找到了一种与β-PbO2具有类似的电子性质的三元材料Mg(BiO3)2,它也已经在实验上制备出来。虽然Mg(BiO3)2在HSE杂化泛函下表现为半导体性质,但通过施加拉伸应变它可以由半导体转变为具有能带反转的拓扑半金属。PBE泛函下三元材料Mg(BiO3)2与β-PbO2的电子性质基本是一样的,不考虑自旋轨道耦合时表现为node-line半金属,考虑自旋轨道耦合时表现为Dirac半金属。因此,该工作为实验上实现三维拓扑Dirac半金属的器件应用提供了备选材料和理论基础;2、我们研究发现二维CrO2是一类Dirac自旋半金属材料。结合能、形成能以及声子谱的计算结果分析,证实了它的动力学稳定性和高合成可能性。研究表明CrO2单层结构中具有受不同对称性保护的两类单自旋Dirac锥,其中高对称点K处的Dirac锥是受C3旋转对称保护的,而高对称线Γ-K之间的Dirac锥是受C2旋转对称保护的,此外费米能级附近的电子结构比较干净,不存在其他的电子态影响这些Dirac锥。考虑Hubbard U修正及应变的结果表明,这些单自旋的Dirac锥可以稳定存在。在考虑自旋轨道耦合作用的情况下,这些单自旋通道形成的Dirac锥也只是打开了室温下几乎可以忽略的微小带隙。在投影的体态Dirac锥附近观察到的较明显的边界态,也说明了系统的拓扑特性。该工作为实现拓扑半金属在自旋电子学器件的应用提供了理论基础。

论文目录

  • 摘要
  • Abstract
  • 第1章 绪论
  •   1.1 拓扑绝缘体
  •   1.2 拓扑半金属
  •     1.2.1 Dirac和 Weyl费米子方程
  •     1.2.2 Dirac半金属
  •     1.2.3 Weyl半金属
  •     1.2.4 Node-line半金属
  •   1.3 自旋半金属
  •   1.4 拓扑属性的表征
  •   1.5 空间群与对称性分类
  •   1.6 本论文的主要研究内容
  • 第2章 第一性原理计算方法及相关理论介绍
  •   2.1 薛定谔方程
  •   2.2 密度泛函理论
  •     2.2.1 绝热近似及价电子近似
  •     2.2.2 单电子近似
  •     2.2.3 Hohenberg-Kohn定理
  •     2.2.4 Kohn-Sham方程
  •   2.3 相关计算软件介绍
  • 第3章 三维Dirac半金属β-PbO
  •   3.1 引言
  • 2 的晶体结构'>  3.2 计算方法及β-PbO2的晶体结构
  • 2 的电子性质'>  3.3 β-PbO2的电子性质
  • 3)2 的结构与电子性质'>  3.4 Mg(BiO32的结构与电子性质
  •   3.5 小结
  • 第4章 二维Dirac自旋半金属CrO
  •   4.1 引言
  • 2 的晶体结构'>  4.2 计算方法及二维CrO2的晶体结构
  • 2 的电子性质'>  4.3 二维CrO2的电子性质
  •   4.4 小结
  • 第5章 总结与展望
  •   5.1 总结
  •   5.2 展望
  • 参考文献
  • 致谢
  • 个人简历与攻读硕士期间的成果
  • 文章来源

    类型: 硕士论文

    作者: 王伟

    导师: 孙立忠

    关键词: 半金属,自旋半金属,拓扑性,表面态

    来源: 湘潭大学

    年度: 2019

    分类: 基础科学

    专业: 物理学

    单位: 湘潭大学

    分类号: O469

    DOI: 10.27426/d.cnki.gxtdu.2019.000487

    总页数: 60

    文件大小: 3976K

    下载量: 42

    相关论文文献

    • [1].Large linear magnetoresistance in a new Dirac material BaMnBi_2[J]. Chinese Physics B 2016(10)
    • [2].Zero Refractive Index Properties of Two-Dimensional Photonic Crystals with Dirac Cones[J]. Chinese Physics Letters 2019(03)
    • [3].Dirac Oscillator Under the New Generalized Uncertainty Principle From the Concept Doubly Special Relativity[J]. Communications in Theoretical Physics 2019(11)
    • [4].Wave Functions for Time-Dependent Dirac Equation under GUP[J]. Communications in Theoretical Physics 2018(04)
    • [5].Structural and electrical transport properties of Dirac-like semimetal PdSn_4 under high pressure[J]. Chinese Physics B 2019(12)
    • [6].Pressure-induced Lifshitz transition in the type Ⅱ Dirac semimetal PtTe_2[J]. Science China(Physics,Mechanics & Astronomy) 2019(04)
    • [7].Contactless Microwave Detection of Shubnikov–De Haas Oscillations in Three-Dimensional Dirac Semimetal ZrTe_5[J]. Chinese Physics Letters 2019(06)
    • [8].Dirac Quasinormal Modes of Static f(R) de Sitter Black Holes[J]. Communications in Theoretical Physics 2018(02)
    • [9].Quantum transport properties of the three-dimensional Dirac semimetal Cd_3As_2 single crystals[J]. Chinese Physics B 2016(11)
    • [10].Approximate Solutions of Dirac Equation with Hyperbolic-Type Potential[J]. Communications in Theoretical Physics 2015(09)
    • [11].Spin and pseudospin symmetries of the Dirac equation with shifted Hulthe′n potential using supersymmetric quantum mechanics[J]. Chinese Physics B 2013(12)
    • [12].Solution of Dirac Equation with Generalized Hylleraas Potential[J]. Communications in Theoretical Physics 2013(03)
    • [13].Dirac cohomology and Dirac induction[J]. Science China(Mathematics) 2011(11)
    • [14].Spin symmetric solutions of Dirac equation with Pschl-Teller potential[J]. Chinese Physics B 2011(07)
    • [15].Dirac协变导数的扩展[J]. 科协论坛(下半月) 2010(04)
    • [16].非线性Dirac系统的n-孤波解[J]. 科技信息 2009(09)
    • [17].一维奇型Dirac算式自伴域的刻画[J]. 江苏科技大学学报(自然科学版) 2009(05)
    • [18].利用弦链系统模拟量子力学中的Dirac梳[J]. 物理实验 2017(01)
    • [19].The Brio System with Initial Conditions Involving Dirac Masses: A Result Afforded by a Distributional Product[J]. Chinese Annals of Mathematics(Series B) 2014(06)
    • [20].Arbitrary-state solutions of the Dirac equation for a Mbius square potential using the Nikiforov-Uvarov method[J]. Chinese Physics C 2013(04)
    • [21].Solution of Dirac Equation with Killingbeck Potential by Using Wave Function Ansatz Method under Spin Symmetry Limit[J]. Communications in Theoretical Physics 2011(01)
    • [22].Measurement of the bulk and surface bands in Dirac line-node semimetal ZrSiS[J]. Chinese Physics B 2018(01)
    • [23].Unexpected low thermal conductivity and large power factor in Dirac semimetal Cd_3As_2[J]. Chinese Physics B 2016(01)
    • [24].Trace Formulae for the Nonlinearization of Periodic Finite-Bands Dirac Spectral Problem[J]. Journal of Mathematical Research with Applications 2016(02)
    • [25].Disappearance of the Dirac cone in silicene due to the presence of an electric field[J]. Chinese Physics B 2014(03)
    • [26].Dirac Particles' Tunneling Radiation from Dilaton Space-time with Squashed Horizons[J]. Communications in Theoretical Physics 2011(12)
    • [27].Dirac Equation with a New Tensor Interaction under Spin and Pseudospin Symmetries[J]. Communications in Theoretical Physics 2018(09)
    • [28].Electron transport in Dirac and Weyl semimetals[J]. Chinese Physics B 2018(10)
    • [29].Stability of Dirac Equation in Four-Dimensional Gravity[J]. Chinese Physics Letters 2017(06)
    • [30].Electronic structure, Dirac points and Fermi arc surface states in three-dimensional Dirac semimetal Na_3Bi from angle-resolved photoemission spectroscopy[J]. Chinese Physics B 2016(07)

    标签:;  ;  ;  ;  

    Dirac半金属β-PbO2及Dirac自旋半金属CrO2的第一性原理研究
    下载Doc文档

    猜你喜欢