人工神经网络论文_李杰,段光友,曾义,段振馨,吴卓熙

导读:本文包含了人工神经网络论文开题报告文献综述、选题提纲参考文献及外文文献翻译,主要关键词:神经网络,人工智能,地波,卷积,深度,模型,盾构。

人工神经网络论文文献综述

李杰,段光友,曾义,段振馨,吴卓熙[1](2019)在《人工神经网络、极端梯度提升和Logistic回归用于预测再次剖宫产术中输血的比较分析》一文中研究指出目的通过大样本临床数据构建再次剖宫产术中输血的预测模型,分析比较人工神经网络(artificial neural network,ANN)、极端梯度提升(extreme gradient boosting,XGB)和Logistic回归3种机器学习算法的预测效果。方法通过医院病历系统,收集我院2015年10月至2017年10月符合纳入标准的再次剖宫产产妇2 525例,详细录入产妇术前、术中各项指标。将可能有临床意义的变量纳入预测模型的构建,分别采用Logistic回归、XGB和ANN 3种机器学习算法构建术中输血预测模型。计算并比较3个模型的ROC曲线下面积(AUROC)、精确度、召回率和F1值4个指标。结果研究的有效样本共2 525例,其中332例(13.1%)进行了术中输血。最终的模型得到5个最重要的预测因素为:术前Hb、手术时间、宫缩乏力、前置胎盘和ASA分级。Logistic回归、XGB和ANN 3种算法的AUROC依次为0.960、0.959、0.956,同时通过F1值、精确度、召回率3个指标的比较发现3种算法差别很小。为进一步比较预测效果,再次在训练样本和测试样本上进行预测验证,发现XGB的AUROC为0.904和0.886,高于Logistic回归的0.868和0.878,以及ANN的0.882和0.884,同时XGB的精确度、召回率和F1 3个指标均略高于Logistic回归和ANN。结论术前Hb、手术时间、前置胎盘等指标可用于预测再次剖宫产术中输血。Logistic回归、XGB和ANN这3种机器学习算法均可用于剖宫产术中输血的预测,但XGB的预测效果比Logistic回归和ANN更准确。(本文来源于《第叁军医大学学报》期刊2019年24期)

岳岭,刘方,刘辉,曹利强[2](2020)在《基于人工神经网络的大直径盾构隧道施工地层变形预测分析》一文中研究指出为了预测盾构施工引起的地表沉降规律,以京张高铁清华园大直径泥水盾构隧道工程为背景,结合盾构试验段隧道掘进过程中地层变形的监测数据,建立基于时间序列的NARNN(不含外部输入)和NARXNN(含外部输入)非线性自回归神经网络预测模型,对重要监测断面测点的隧道掘进过程中地表沉降发展趋势进行预测分析,并与传统时间序列ARMA模型预测结果进行对比,发现NARNN模型、NARXN模型、NARMA模型的预测结果与现场监测数据都比较吻合,而NARNN和NARXN非线性自回归神经网络预测模型精度明显高于传统时间序列ARMA模型,而考虑外部输入的NARXNN模型又比不考虑外部输入的NARNN精度高。因此,在考虑施工方法、地质条件和空间效应(埋深)等外部因素条件下建立的NARXNN模型具有良好的预测效果,能够较好地模拟盾构施工引起的地表沉降规律。(本文来源于《铁道标准设计》期刊2020年01期)

陶常勇,高彦钊,王元磊,张兴明[3](2019)在《人工神经网络加速方法综述与研究》一文中研究指出针对人工神经网络计算密集型和数据密集型的计算特点,在分析了当前常见的硬件加速架构的基础上,提出了一种可重构众核加速阵列的逻辑结构,包括规则控制层、数据缓存层和乘加算粒层,在数据缓存层上还构建片上网络,实现数据在各处理节点之间的流动。该结构突破了冯诺依曼内存墙的问题,实现了计算存储一体化的近数据计算。(本文来源于《天津科技》期刊2019年S1期)

王潇,王婷,张晨,刘芳[4](2019)在《人工神经网络优化厚朴提取工艺及其“发汗”前后的含量测定》一文中研究指出目的:优化厚朴提取工艺,从厚朴提取物的化学成分变化,阐释厚朴"发汗"的必要性。方法:采用正交设计结合人工神经网络模型的方法,以提取物干膏得率、厚朴酚、和厚朴酚叁个指标的综合评分为评价指标,对厚朴提取时的溶剂浓度、料液比、提取时间和提取次数进行优化,确定最佳提取工艺;采用HPLC法对"发汗"及"未发汗"厚朴提取物进行含量测定,对比其"发汗"前后的厚朴酚与和厚朴酚的含量变化。结果:筛选的最佳提取工艺为加入厚朴样品100 g,加入70%乙醇提取,料液比为1∶8,提取时间为90 min,提取次数为2次;"发汗"后厚朴的厚朴酚提取率提高45.04%,和厚朴酚含量提高32.27%。结论:正交设计结合BP人工神经网络模型的方法稳定可行,具有良好重复性;"发汗"能增加厚朴中厚朴酚及和厚朴酚的提取率,从化学成分角度阐释了厚朴"发汗"的科学性与必要性。(本文来源于《中华中医药学刊》期刊2019年12期)

李发挥,李雁浩,桂逢烯,谢霜,杜永洪[5](2019)在《声空化对巨噬细胞损伤效应的人工神经网络自适应模型辨识》一文中研究指出超声空化效应有助于提高基因或药物向细胞内的转染或运输。为了进一步指导超声空化效应在医学应用中声参数的选择,建立声参数与空化效应之间的量效关系十分重要。由于超声空化效应的复杂性和非线性,难以采用传统的机理分析方法确定其精确的数学表达式。人工神经网络辨识方法具有较好的自组织、自学习能力及强大的非线性拟合能力,能够以监督或非监督学习的方式建立输入变量与输出变量之间的映射关系,而不需要建立对象的详细数学表达式。基于本课题组前期谢霜等的实验研究数据,本研究旨在采用改进的人工神经网络算法,建立声参数与空化效应之间的量效关系模型,有望为超声应用的声参数筛选提供理论指导。目的针对超声空化效应过程中声参数与空化效应之间的影响关系问题,本研究将多模型自适应思想与人工神经网络相结合,构建了声空化对巨噬细胞损伤效应的辨识模型。方法 1.本课题组前期探究了频率为42 kHz、强度为0.13—0.34 W/cm~2连续可调的低频低强度超声在不同声参数(超声强度、辐照时间)条件下,超声辐照对体外培养的巨噬细胞活性的影响。实验研究数据分为建模样本和检测样本。2.将巨噬细胞视为黑箱,超声强度和辐照时间作为神经网络的输入变量,巨噬细胞存活率作为输出变量。基于建模样本,采用了人工神经网络算法来训练神经网络,由此构建输入与输出变量之间的数值映射关系,并通过检测样本检测建立的神经网络模型的辨识精度。3.本研究提出基于多模型自适应思想选取建模样本,从而克服因建模样本选取不当而造成的模型失配问题,实现传统神经网络模型的改进。结果相比传统模型,基于多模型自适应思想与人工神经网络相结合建立的改进模型的辨识值与实验值更为接近,具有较高的辨识精度(EI=0.0137;PA=100%)。结论基于改进的人工神经网络建立的声空化对巨噬细胞的损伤效应模型具有较高的辨识精度。利用本研究建立的模型,能够实现超声空化效应的量化分析,缩减生物学实验成本。(本文来源于《中国超声医学工程学会第十届全国超声治疗及生物效应医学学术大会论文汇编》期刊2019-12-06)

黄丽娟[6](2019)在《遗传算法与人工神经网络的应用》一文中研究指出本文介绍了遗传算法和人工神经网络算法在文本检索中的识别原理,并以人工神经网络的深度学习过程为例介绍了其训练过程。阐述了遗传算法与人工神经网络相结合的必要性。(本文来源于《电子技术与软件工程》期刊2019年22期)

陈晶,周斌[7](2019)在《基于BP人工神经网络的改进广义预测控制的电网负荷预测》一文中研究指出提出了一种基于BP人工神经网络的改进广义预测控制的电网负荷预测新方法.在对通过对改进广义预测控制分析的基础上,综合考虑了电网负荷预测的意义与组合模型技术的优越性,将比例积分型广义预测控制与BP人工神经网络相结合构成组合模型.组合后的预测模型有效地结合了两种算法的优点,弥补了广义预测在非线性系统控制里的不足,并进行仿真实验,证明该方法具有明显的优越性和现实可行性.(本文来源于《赤峰学院学报(自然科学版)》期刊2019年11期)

唐风敏[8](2019)在《基于人工智能神经网络技术的汽车故障诊断》一文中研究指出随着汽车电子技术的突飞猛进,汽车内部结构及相互通信关系越发复杂化,同时用户对汽车故障诊断的及时性和准确性要求也越来越高,这就增加了汽车故障诊断过程中的困难程度和不确定性。通过建立以人工智能神经网络为核心的汽车故障聚类融合系统来对故障进行诊断,既满足远程诊断的实时性,又使诊断售后服务智能化,人性化,将有良好的发展前景。(本文来源于《汽车电器》期刊2019年11期)

蔡佳佳,曾玉明,周浩,文必洋[9](2019)在《基于人工神经网络的高频雷达风速反演》一文中研究指出风速是重要的海洋状态参数之一,对海面风速的准确提取是实现海洋环境监测和沿海工程应用的重要保证。目前,作为新兴海洋环境监测设备,高频雷达在风速提取方面仍然存在挑战。本文提出了一种基于人工神经网络的风速提取方法,利用历史浮标测量海态数据训练风速提取网络,实现风速与有效波高、波周期、风向及时间因素之间的非线性映射。测试结果表明了这一网络在时间和空间上的稳定性;进而将已训练的网络应用到便携式高频地波雷达OSMAR-S的风速反演中,得到的风速与浮标测量风速间的相关系数达到0.849,均方根误差为2.11 m/s。这一结果明显优于常规由浪高反演风速的SMB方法,验证了该方法在高频雷达风速反演中的可行性。(本文来源于《海洋学报》期刊2019年11期)

赵蒙蒙,汪洋,邓家骏,佘云浪,陈昶[10](2019)在《人工智能卷积神经网络在全视野数字切片图像分析中的应用进展》一文中研究指出组织学病理是临床疾病诊断的金标准。全视野数字切片(whole slide image,WSI)的出现,虽弥补了传统的玻璃切片易损坏、检索困难以及诊断可重复性差的不足,但同时也带来了巨大的工作量。人工智能(artificial intelligence,AI)辅助病理医师的WSI分析,可解决工作效率低,提高诊断的一致性。其中,以深度学习卷积神经网络(convolution neural network,CNN)算法的应用最为广泛。本文综述目前已报道的CNN在WSI图像分析中的应用情况,总结CNN在病理学领域中的发展趋势并作出展望。(本文来源于《中国胸心血管外科临床杂志》期刊2019年11期)

人工神经网络论文开题报告

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

为了预测盾构施工引起的地表沉降规律,以京张高铁清华园大直径泥水盾构隧道工程为背景,结合盾构试验段隧道掘进过程中地层变形的监测数据,建立基于时间序列的NARNN(不含外部输入)和NARXNN(含外部输入)非线性自回归神经网络预测模型,对重要监测断面测点的隧道掘进过程中地表沉降发展趋势进行预测分析,并与传统时间序列ARMA模型预测结果进行对比,发现NARNN模型、NARXN模型、NARMA模型的预测结果与现场监测数据都比较吻合,而NARNN和NARXN非线性自回归神经网络预测模型精度明显高于传统时间序列ARMA模型,而考虑外部输入的NARXNN模型又比不考虑外部输入的NARNN精度高。因此,在考虑施工方法、地质条件和空间效应(埋深)等外部因素条件下建立的NARXNN模型具有良好的预测效果,能够较好地模拟盾构施工引起的地表沉降规律。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

人工神经网络论文参考文献

[1].李杰,段光友,曾义,段振馨,吴卓熙.人工神经网络、极端梯度提升和Logistic回归用于预测再次剖宫产术中输血的比较分析[J].第叁军医大学学报.2019

[2].岳岭,刘方,刘辉,曹利强.基于人工神经网络的大直径盾构隧道施工地层变形预测分析[J].铁道标准设计.2020

[3].陶常勇,高彦钊,王元磊,张兴明.人工神经网络加速方法综述与研究[J].天津科技.2019

[4].王潇,王婷,张晨,刘芳.人工神经网络优化厚朴提取工艺及其“发汗”前后的含量测定[J].中华中医药学刊.2019

[5].李发挥,李雁浩,桂逢烯,谢霜,杜永洪.声空化对巨噬细胞损伤效应的人工神经网络自适应模型辨识[C].中国超声医学工程学会第十届全国超声治疗及生物效应医学学术大会论文汇编.2019

[6].黄丽娟.遗传算法与人工神经网络的应用[J].电子技术与软件工程.2019

[7].陈晶,周斌.基于BP人工神经网络的改进广义预测控制的电网负荷预测[J].赤峰学院学报(自然科学版).2019

[8].唐风敏.基于人工智能神经网络技术的汽车故障诊断[J].汽车电器.2019

[9].蔡佳佳,曾玉明,周浩,文必洋.基于人工神经网络的高频雷达风速反演[J].海洋学报.2019

[10].赵蒙蒙,汪洋,邓家骏,佘云浪,陈昶.人工智能卷积神经网络在全视野数字切片图像分析中的应用进展[J].中国胸心血管外科临床杂志.2019

论文知识图

神经网络训练的误差及梯度情况臼Trai!5Roo殆多层感知器的结...混凝土试块强度极差控制图大鼠脑部电极位置切片照片人工神经网络计算成矿远景区1...人工神经网络的基本GUI窗口界...

标签:;  ;  ;  ;  ;  ;  ;  

人工神经网络论文_李杰,段光友,曾义,段振馨,吴卓熙
下载Doc文档

猜你喜欢