(国网内蒙古东部电力有限公司鄂温克族自治旗供电分公司)
摘要:随着我国经济建设发展速度提升,对电力系统要求越来越高。良好稳定的供电体系可以更好地促进生产建设。其中,电力电缆设备故障分析与探测技术的质量与时效性对电力供给系统尤为重要。论文通过对电力电缆设备故障分析与探测技术的研究,总结出相关的故障问题与技术优化措施,为电力电缆的稳固性与安全性提供有力保障。
关键词:电力电缆;故障分析;探测技术;研究
目前我国社会经济快速增长,现代化生产中需要使用大量的机电设备,人们生活对电力的需求与日俱增,国家电网在运行标准不断提升的同时加强对电力传输设备、电力设施的升级;新型电力电缆相比传统电缆具有更加安全高效和运行更加稳定的优点;电力电缆具有安全、可靠的优点,被广泛应用。但由于电力电缆常埋于地下,受机械损伤和绝缘老化等问题导致电缆常发生短路故障,随着城市电网的开展,电力电缆故障测试技术成为供电部门日益关注的问题,供电过程出现电缆故障时可以及时对故障节点进行迅速定位是维护电力电缆正常运行的关键。
1.电力电缆故障分析
1.1操作方面造成的故障
随着我国基础工程建设步伐逐渐加快,在电力系统中电力电缆的铺设工程施工作业尤为重要,是日后电力电缆能够充分发挥作用的重要基础保障。但现阶段我国电力电缆铺设施工作业中却存在诸多问题与弊端。首先,由于操作失误与不当对电力电缆造成的损坏极为突出。具体体现在施工作业人员的工作方式与责任态度上,施工人员在对电力电缆进行铺设施工中没能对设计图纸进行认真研究与考量,只是单一盲目地进行布网施工,对施工现场存在的隐患问题没能及时发现,在进行机械设备操作中极易造成对电力电缆的摩擦性破坏。其次,较轻的摩擦破坏并不能对电力电缆造成较重的直接伤害,但由于破损面的扩散与物质侵蚀,长期下去容易造成对电力电缆的腐蚀,进行导致电力系统全盘崩溃与故障的产生。
1.2电缆本身质量和操作问题
电力电缆在设计时没有按照规范标准进行,在制作中使用劣质材料,不合理的电场分布和违规操作是造成电力故障的主要原因,电缆本身质量问题主要表现在:电缆在制作时的绝缘部位包裹出现破损或不平整等问题,电缆附属设备在制造中出现电缆金属表面粗糙;电缆零件设计达不到技术要求发生的泄露问题;电缆绝缘体和绝缘层受潮造成的电力电缆故障。在铺设电力电缆工程作业中,相关操作人员未按照规定施工,靠近电力电缆管线进行施工容易造成电力电缆破损;加上长时间的电力电缆线路收到侵蚀后电缆出现故障,导致电力崩溃,成为电缆发生故障的原因,给人们的生产生活造成严重影响。
1.3绝缘体方面造成的故障
“绝缘体”是电力电缆的重要保护层与防护体,对电力电缆的整体工作运行与稳定安全起到至关重要的影响作用。但由于绝缘体物质的特殊性,导致其造成的故障问题频出。首先,主要体现在高温与强电压的作用影响下,极易造成绝缘体本身的电阻率与阻燃性发生突变性改变,这种突发性改变对绝缘体本身危害极大,更对绝缘效能的发挥起到较大的削减作用。同时,对介质的消耗磨损程度也会逐渐增大,进而导致绝缘体老化、崩溃现象的产生,这种绝缘体老化现象是电力电缆的重要故障之一。
1.4电压超过电缆承压
电缆在架设工程完成后没有进行找平处理,不平整的地方容易造成电力电缆不在一个水平面上,电缆的起伏造成高处绝缘物向低处导致电缆的短路;当电缆中电压超过电缆承受值时会发生电压过大造成的大面积烧毁电缆,多数户外终端故障均有大气过电压引起,电缆本身的缺陷也会导致电缆故障的发生。
2.电力电缆的故障检测方法
2.1电力电缆故障原因的判定
电力电缆故障的形成不是单一演变形成的,必定有其源头性与根源性。因此,针对电力电缆检查维修工作的开展,就必须先对其故障形成与发生的原因进行判定。这种判定有其相对的重要性与作用,故障原因判定可以为下一步技术人员进行维修提供相应的参考意见,从分析故障的形成与损坏程度可以针对性地采取合理的处理措施,现阶段电力电缆故障原因判定方式主要为故障距离测量与故障结点确定。首先,故障距离测量法。该方法主要是根据对电力电缆故障距离进行仪器测量的方式,进而来实现对故障产生原因的初步判定,该方法在进行中依靠传统桥测法与现代化比较常用的行波测距来实现完成。其次,故障结点确定法。这种判定方法比故障距离测量法更为精准与快速,故障结点确定法是通过对电力电缆故障定点、划点、认点的步骤方式进行故障技术判定的。通过电缆的路径走向,划分故障点的大体范围,之后利用放电声测法与相关仪器设备进而锁定具体位置。
2.2电力电缆故障节点探测方法
首先,低压脉冲法。低压脉冲法在现阶段我国电力电缆探测中较为常用。该方法原理是以微波脉冲波传输接受的方式对其故障进行探测。其探测原理是脉冲波在传输的过程中,如遇到故障点就会形成相对的反弹预警,而自动装置会根据传输进程长度与反弹长度之间的差额进行具体核算,其核算进程长度的结果正是其故障点发生的位置。但低压脉冲法由于输送信号电压较低,只能对电力电缆低阻故障与开路故障进行探测。其次,高压脉冲法。通过对电力电缆实施高压脉冲进而定位故障点的具体方法,在高压脉冲过程中由于其传输的电压脉冲较高,因此遇到故障点就会出现击穿与放电现象。但由于故障点电阻较高,双向高电压与高电阻进行快速碰撞后会产生放电与短路现象,所以,相关技术维修人员可以通过短路点定位进而寻找到故障点。这种方法比低压脉冲法在锁定故障点方面更为快速与高效。最后,二次脉冲测量法。二次脉冲测量法是根据现阶段我国生产耗电与百姓生活用电应运而生的高效探测技术,充分解决了传统电力电缆电阻偏高且接地等问题。弥补了传统电压检测不足之处,使电力电缆故障探测技术更为完善化与系统化。其探测原理是向电力电缆输出低压脉冲波,当低压脉冲波在经过故障点时,如故障点电阻较高,该低压脉冲波会自动返回,之后随即又向其故障点释放高压脉冲波,高压脉冲波与高压电阻会产生击穿放电效果,然后又会紧随发出低压脉冲波,该脉冲波与故障点进行返回。二次脉冲测量设备会将上述脉冲波流程进行相对保存,进而更为标准、效率、准确地判定其电力电缆故障点。
3.电力电缆故障的排除方法
若发生故障的电力电缆故障点电阻无穷大,使用低压脉冲探测法能够准确迅速的找到断路位置。单纯的断路在电缆故障中比较少见。通常断路故障为相对地或相间高阻故障或者相对地或相间低阻故障并存。
低压脉冲测量电缆故障点的电阻为零的情况,能够准确找到短路故障。测量出的故障点电阻在0-100Ω为低电阻引发的电缆导电性能下降故障。
对于电缆结合部位应该采用高压冲闪测量,故障点电阻较大。一般当测试电流大于15mA时测试波形具有重复性以及可以相重叠,同时一个波形有一个发射、三个反射、且脉冲幅度逐渐减弱时,所测的距离为故障点到电缆测试端的距离,否则为故障点到电缆测试对端的距离。
结语
综上所述,电力电缆设备故障分析与探测技术对电力系统影响颇大。运用更为合理的探测技术,结合电力电缆故障现场实际情况,采用循序渐进逐一排次的测量方式。同时,加强日常电力电缆维护管理模式,让电力电缆与相关设备可以充分发挥其稳定性能,为我国电力企业的发展壮大与基础电力保障打下良好基础。
参考文献
[1]张忠海.关于高压电力电缆故障分析及探测技术的初步探讨[J].中国科技财富,2018,11(9):00013-00012.
[2]倪少军.高压电力电缆故障分析及探测技术应用[J].科技创新导报,2018,44(9):1197-1197.