基于无人机图像的玉米冠层叶绿素含量检测与分布研究

基于无人机图像的玉米冠层叶绿素含量检测与分布研究

论文摘要

为了快速、无损地获取大田作物叶绿素含量空间分布,基于无人机遥感技术研究了大田玉米冠层叶绿素含量检测及分布图绘制方法。利用无人机遥感技术采集了150幅大田玉米的航拍图像,并通过Pix4dmapper软件对其进行了拼接;在实验田中,等距获取80株玉米叶片样本,通过化学法萃取叶绿素,并使用分光光度计测量叶绿素含量,形成了基础数据源。在数据处理方面,采用Arc GIS软件对样本点的POS(Position and orientation system)数据与无人机图像进行匹配;对无人机拍摄的RGB图像,首先进行R、G、B三通道分量值提取,构建了绿红比值、绿红差值、归一化红绿差值、超绿等10种颜色特征,并计算了均值、标准偏差、平滑度、三阶矩等6种纹理特征,然后建立了基于BP(Back propagation)神经网络的玉米冠层叶绿素含量检测模型。实验结果表明,基于BP神经网络的玉米冠层叶绿素含量检测模型的均方根误差RMSE为4. 465 9 mg/L,决定系数R~2为0. 724 6。通过BP神经网络检测模型计算出大田玉米图像每个像素点的叶绿素含量,基于伪彩色技术绘制大田玉米叶绿素含量可视化分布图,分析田间玉米冠层叶绿素含量分布图可以直观区分田间道路与冠层区域,显示地块叶绿素分布差异。通过无损检测大田玉米冠层叶绿素含量及叶绿素分布可视化,可为田间作物长势评价和精细化管理提供技术支持。

论文目录

  • 0 引言
  • 1 材料与方法
  •   1.1 实验样本
  •   1.2 玉米冠层航拍图像信息获取
  •   1.3 叶绿素含量测定
  •   1.4 无人机图像处理
  •   1.5 BP神经网络建模
  • 2 结果与分析
  •   2.1 样本叶绿素含量统计
  •   2.2 图像特征参数提取
  •   2.3 无人机图像处理
  •   2.4 玉米冠层叶绿素含量检测模型
  •   2.5 田间玉米冠层叶绿素分布
  • 3 结论
  • 文章来源

    类型: 期刊论文

    作者: 乔浪,张智勇,陈龙胜,孙红,李莉,李民赞

    关键词: 玉米冠层,叶绿素,无人机遥感技术,神经网络,可视化分布

    来源: 农业机械学报 2019年S1期

    年度: 2019

    分类: 农业科技,工程科技Ⅱ辑,信息科技

    专业: 工业通用技术及设备,农作物,自动化技术

    单位: 中国农业大学现代精细农业系统集成研究教育部重点实验室,中国农业大学农业农村部农业信息获取技术重点实验室

    基金: 国家重点研发计划项目(2018YFD0300505-1),中国农业大学研究生实践教学基地建设项目(ZYXW037)和中国农业大学研究生课程建设项目(HJ2019029,YW2019018)

    分类号: S513;TP751;TP183

    页码: 182-186+194

    总页数: 6

    文件大小: 293K

    下载量: 456

    相关论文文献

    • [1].大疆无人机创始人 汪滔[J]. 现代班组 2020(08)
    • [2].浅谈无人机在公路领域的应用[J]. 吉林交通科技 2018(04)
    • [3].采用无人机航测技术实现高速公路建设用地批后监测的探索[J]. 浙江国土资源 2019(12)
    • [4].无人机摄影测量在农房不动产确权登记中的应用研究[J]. 浙江国土资源 2019(12)
    • [5].基于光电红外复合传感的无人机自主管控系统[J]. 科学技术创新 2019(32)
    • [6].无人机航测技术在临汾浮山断裂调查中的应用[J]. 山西地震 2019(04)
    • [7].“低慢小”无人机侦测反制系统的技术比较[J]. 中国公共安全 2019(11)
    • [8].“探路星”无人机通过放飞评审[J]. 军民两用技术与产品 2019(11)
    • [9].基于蜂群与A~*混合算法的三维多无人机协同[J]. 航天控制 2019(06)
    • [10].未知区域无人机协同搜索方法及效率分析[J]. 航空科学技术 2019(10)
    • [11].非确定环境下无人机与无人车动态协同设计[J]. 洛阳理工学院学报(自然科学版) 2019(04)
    • [12].基于灰色层次分析法的无人机回收系统评估[J]. 无人系统技术 2019(05)
    • [13].军地联合——创新无人机应用技术专业人才培养[J]. 广东职业技术教育与研究 2019(06)
    • [14].无人机在农业领域的应用[J]. 吉林蔬菜 2019(04)
    • [15].基于无人机平台的直立作物倒伏监测研究展望[J]. 中国农机化学报 2019(11)
    • [16].基于系统六元理论的电磁武器反无人机蜂群军事概念建模研究[J]. 军事运筹与系统工程 2019(03)
    • [17].民用无人机引发治安问题的思考[J]. 江西警察学院学报 2019(06)
    • [18].无人机航拍在电视新闻中的应用探析——以电视节目主持人为视角[J]. 上海广播电视研究 2019(04)
    • [19].泛用性模块化测绘无人机[J]. 中国水运(下半月) 2019(12)
    • [20].无人机测绘数据处理关键技术及应用探究[J]. 智能城市 2020(01)
    • [21].无人机法律规范和应用发展现状[J]. 中国科技信息 2020(01)
    • [22].无人机动力装置模块化研究[J]. 中国科技信息 2020(02)
    • [23].四轴无人机总体结构模块化设计[J]. 中国科技信息 2020(02)
    • [24].基于无人机的消防灭火系统设计[J]. 中国科技信息 2020(02)
    • [25].探究无人机遥感技术在测绘工程测量中的应用[J]. 门窗 2019(14)
    • [26].无人机航空测量技术在地形测绘中的应用[J]. 四川有色金属 2019(04)
    • [27].无人机航测技术在矿区周边地质环境治理中的应用研究[J]. 世界有色金属 2019(18)
    • [28].无人机遥感技术在工程测量中的应用[J]. 世界有色金属 2019(18)
    • [29].低空无人机航测数据精度影响因素分析[J]. 城市建设理论研究(电子版) 2019(21)
    • [30].无人机在西双版纳地形测绘中的应用[J]. 科技创新与应用 2020(01)

    标签:;  ;  ;  ;  ;  

    基于无人机图像的玉米冠层叶绿素含量检测与分布研究
    下载Doc文档

    猜你喜欢