导读:本文包含了确定解论文开题报告文献综述、选题提纲参考文献及外文文献翻译,主要关键词:不等式,各向同性,孤子,芽孢,时间,方程组,方法。
确定解论文文献综述
申陶然[1](2015)在《确定解集趣味多》一文中研究指出昨天的数学作业发下来了,翻看了一下,唉,居然错了6条,简直惨不忍睹啊!我仔细读了几遍题目,咦?不等式列对了呀,怎么还是错的?正当我一筹莫展的时候,老师开始讲作业了.不管怎样,先听吧!听完后我发现,不等式没有列错,就是解集都确定错了,真是太大意了.这时我想到了画数轴求解集,可是如果解每个不等式的时候都画数轴,又太麻烦了.于是我想,有没有什么更便捷的方法呢?我怀着一肚子的疑问,去向老师请教,老师看我这样,(本文来源于《初中生世界》期刊2015年21期)
梁永生,邹粤,张基宏[2](2011)在《基于PLE的有确定解的端到端网络链路时延推测方法》一文中研究指出网络时延是重要的网络性能指标,端到端网络时延推测能够克服传统的基于路由器或者路由器协作的网络测量技术的弊端。在网络拓扑已知且稳定和链路性能时空独立性的假设前提下,给出了网络链路时延推测模型,提出了一种基于伪似然估计(PLE)的有确定解的端到端网络链路时延推测方法。在应用期望最大化算法的伪似然估计的基础上,控制背靠背发包方式,确定可以求解的探测单元,解决了不满足有确定解拓扑下的求解问题,且有效降低了计算复杂度。最后利用基于模型的计算验证了该方法的准确性和有效性。(本文来源于《计算机科学》期刊2011年09期)
车晓曦,李校堃,李社增[3](2010)在《利用响应曲面确定解淀粉芽孢杆菌高发酵产量的区间》一文中研究指出为寻求解淀粉芽孢杆菌较高发酵产量的发酵条件,采用响应曲面试验方法,研究了发酵温度、时间和初始pH值3个因素的发酵条件对解淀粉芽孢杆菌发酵产量的影响。结果表明:发酵时间23~26 h、温度29~31℃、初始为pH 6.5时,该株解淀粉芽孢杆菌的发酵菌体产量达3.0×109个/mL。采用该试验方法提高了该菌株的发酵产量,同时适合工业上大规模生产。(本文来源于《贵州农业科学》期刊2010年05期)
蒲利春,张雪峰,徐丽君[4](2005)在《非线性“loop”孤子方程的确定解》一文中研究指出提出一种求解非线性“loop”孤子方程确定解的新方法,即以“行波”为因子,利用幂级数直接求解该方程解析函数U(ξ),用MatLab绘制c→光速和c→声速的U(ξ)_ξ图像,直接观察该方程解的变化规律,找出该方程的确定解(含孤波解).该方法为求解难度大的非线性孤子方程提供借鉴.(本文来源于《物理学报》期刊2005年09期)
萧国梁[5](1998)在《通过画图确定解的个数》一文中研究指出(本文来源于《初中生数学学习》期刊1998年05期)
宋金宝[6](1989)在《空间均匀各向同性的时间确定解》一文中研究指出我们利用展场方法,就空间均匀且各向同性的速度分布函数的时间确定方程组,求得了它的一种迭代解。(本文来源于《内蒙古大学学报(自然科学版)》期刊1989年01期)
确定解论文开题报告
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
网络时延是重要的网络性能指标,端到端网络时延推测能够克服传统的基于路由器或者路由器协作的网络测量技术的弊端。在网络拓扑已知且稳定和链路性能时空独立性的假设前提下,给出了网络链路时延推测模型,提出了一种基于伪似然估计(PLE)的有确定解的端到端网络链路时延推测方法。在应用期望最大化算法的伪似然估计的基础上,控制背靠背发包方式,确定可以求解的探测单元,解决了不满足有确定解拓扑下的求解问题,且有效降低了计算复杂度。最后利用基于模型的计算验证了该方法的准确性和有效性。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
确定解论文参考文献
[1].申陶然.确定解集趣味多[J].初中生世界.2015
[2].梁永生,邹粤,张基宏.基于PLE的有确定解的端到端网络链路时延推测方法[J].计算机科学.2011
[3].车晓曦,李校堃,李社增.利用响应曲面确定解淀粉芽孢杆菌高发酵产量的区间[J].贵州农业科学.2010
[4].蒲利春,张雪峰,徐丽君.非线性“loop”孤子方程的确定解[J].物理学报.2005
[5].萧国梁.通过画图确定解的个数[J].初中生数学学习.1998
[6].宋金宝.空间均匀各向同性的时间确定解[J].内蒙古大学学报(自然科学版).1989