浅晰小学生数学能力的培养

浅晰小学生数学能力的培养

(荣县保华镇礼佳小学校荣县643100)

在应用题教学中采用“一题多叙”“一题多变”“一题多解”等方法,有目的、有重点地设计基本训练,有助于开拓思路,活跃思维,加强素质教育,提高学生分析问题、解决问题的能力。

一题多叙:一题多叙指的是从各种不同的认知角度,依据数量关系去叙述同一式题的教学法。这样训练有利于提高学生对“文字题”与“应用题”关系的理解,有利于培养学生分析问题、解决问题的能力。

如式题;56&pide;7

1、按其运算顺序叙述:

①56除以7,商是多少?②7除56,商是多少?

③56与7的商是多少?④56被7除,商是多少?

⑤用7去除56,商是多少?

2。按其数量关系叙述:

①56里面有几个7?②56是7的几倍?③把56平均分成7份,每份是多少?④一个数的7倍是56,求这个数?

3。按其算式的各部分名称叙述:

被除数是56,除数是7,商是多少?

文字题可以看成是式题的一种转换形式,它只是把口语转换成书面语。这样训练解决了中、差生对文字题理解的困难。如果我们再把文字题情境化,那就是所谓的应用题。

一题多变:一题多变就是把一道题目改变条件或改变问题变换成许多题目。通过一题多变的训练,可使学生从变化发展中掌握应用题之间的联系,构建新的知识结构。

如当一年级学生学完一步应用题,该学两步计算应用题时,让学生知道解答两步应用题的关键是弄清题中的间接条件。由于学生对间接条件的由来不清楚,常常出现解复合应用题时不知从何入手,把两步应用题做成一步,或出现乱做现象。若老师讲一种类型题,学生就做一种类型题,那么题目稍加变化学生就不会做,就会出现死记硬背现象,形成定势思维,不利于培养学生分析问题、解决问题的能力。为了改变这种状况,我抓住解答两步应用题的关键,让学生弄清什么是间接条件,间接条件与已知条件、与问题之间有什么关系等。途径是由一步题导入。

例如:“黑兔12只,白兔3只,一共有多少只兔?”我是这样引导学生的:黑兔的只数,白兔的只数,题目中都直接给出,我们称这两个条件是直接条件,所以一步计算就可以得出一共是15只兔。如果题中第一个条件黑兔12只不变,那么第二个条件白兔3只与黑兔12只有什么关系?(学生会说:白兔3只比黑兔少9只……)如果题中“白兔3只”这个条件不直接给出,根据与黑兔的关系说出来,该怎样叙述题中的第二个条件?(学生可以答出:白兔比黑兔少9只……)解决问题需要知道白兔和黑兔的只数,白兔这个条件需要我们通过与黑兔的关系先算出来,白兔这个条件没有直接给出,这叫间接条件,谁还能把这个条件再变换一下说法,使它变成间接条件?(学生回答:黑兔比白兔多9只,黑兔是白兔的4倍……)

学生思维活跃了,想方设法说出更新颖的条件。这样他们在积极思维中理解了什么是间接条件,间接条件与已知条件、与问题的关系等。理解了也就自然会运算了。接着我又让学生将第一个条件变成间接条件,第二个条件、问题都不变,或问题随着其中的一个条件同时改变,目的仍是巩固练习两步应用题。这样的讲授方法是从学生分析问题入手,在提高学生能力上下功夫,教给学生了解问题、分析问题、解决问题的思路,使学生掌握了解两步应用题的方法,从而收到了事半功倍的效果。

在两步应用题的基础上,不受任何限制地变换任何一个条件和问题,使学生思维扩展,学生可编出三步四步等较为复杂的问题。这样训练,在知识方面可以使学生举一反三、触类旁通,在能力方面可以培养学生思维的灵敏性和创造性。学生分析问题、解决问题的能力明显地提高了。

一题多解:一题多解就是根据题目的结构特征和数量关系,引导学生借助已有的知识,从各个不同角度去思考,从各个方面去分析题中的数量关系,采用各种不同解法达到知识的融会贯通、灵活运用。

例如:学校买来一批儿童读物,按4:5分给五年级甲乙两个班,甲班分得20本,这批儿童读物一共有多少本?

解法一:设这批儿童读物一共有x本?

20=4:(4+5)*x

思路:把这批读物按4:5分给甲、乙两个班,可以看作是把这批读物平均分成(4+5)份,甲班分得4份,乙班分得5份,也就是甲班分得的本数与读物总数的比是4:(4+5)。

解法二:20&pide;4×(4+5)

思路:把这批读物按4:5分给甲、乙两个班,可以看作是一共分成了(4+5)份,其中甲班分得4份,是20本。可以先求出每一份是多少本,再求一共有多少本。

……

在此基础上再引导学生对上面的各种不同解法进行比较,使学生看到题目中的条件虽然是用比来表示的,但却可以看成是分数、整数相除等关系,从而认识到整数、分数、比和比例这些知识的内在联系。虽然学生练的是一道题,但这道题的知识覆盖面却很广。学生在解答时需要选择头脑中储存的多种信息,并进行比较,找到解题的途径和方法,寻求最佳解法,并要善于选择思路简捷、计算简便的解答方法。这就说明,这样训练不仅有利于知识的沟通,而且有利于培养学生分析、解决问题的能力。

标签:;  ;  ;  

浅晰小学生数学能力的培养
下载Doc文档

猜你喜欢