导读:本文包含了高超声速飞行器论文开题报告文献综述、选题提纲参考文献及外文文献翻译,主要关键词:声速,飞行器,参数,模型,观测器,干扰,摄动。
高超声速飞行器论文文献综述
黄笠舟,施崇广,郑晓刚,李怡庆,尤延铖[1](2019)在《高超声速飞行器一体化方法研究》一文中研究指出针对高超声速飞行器一体化设计方法现状的分析,阐明了吸气式发动机与乘波体飞行器之间高效的一体化对于高超声速飞行的重要作用,并从理论、原理、设计方法 3方面进行介绍。在激波理论方面,通过从直线激波的求解拓展到二次曲面激波的求解,为3维曲面激波的研究提供了帮助;在乘波原理方面,将乘波原理从外流乘波拓展到内流乘波,继而提出1种兼顾内外流需求的双乘波原理,深化了乘波原理的内涵;在设计方法方面,对于基本流场的气动设计问题,提出更加高效的一体化气动反设计方法。综上分析并归纳出准3维内外流一体化乘波理论与方法,从而在现有"准3维"研究体系上,构建并完善了全3维内外流一体化乘波理论与方法,对于复杂3维超声速内外流一体化设计技术的发展具有一定借鉴作用。(本文来源于《航空发动机》期刊2019年06期)
李兴格,李刚,熊思宇[2](2019)在《不确定参数摄动的高超声速飞行器滑模控制》一文中研究指出针对系统内不确定性参数摄动的高超声速飞行器(Hypersonic Vehicles,HV)模型,考虑到传统气动系数简化模型无法真实反映飞行器的气动特性和高超声速下某些不确定性参数摄动的问题,提出了一种改进的气动系数模型,利用改进模型得到准确的气动系数参数,设计了一种基于某些不确定参数的模糊函数逼近的高超声速飞行器滑模控制器。应用模糊函数的强大函数逼近能力对不确定参数进行逼近,应用非线性最小二乘法对改进的气动系数模型进行参数辨识,并与滑模变结构控制结合,提高了系统的鲁棒性,并实现了对系统指令的稳定跟踪控制。仿真结果表明,飞行器在加入速度阶跃指令和高度阶跃指令后,系统能够保持稳定性,并对不确定性参数具有很强的鲁棒性。(本文来源于《导弹与航天运载技术》期刊2019年06期)
高莹莹,杨凯威,孔维萱,景昭,杨驰[3](2019)在《高超声速飞行器尖化前缘气动热环境研究》一文中研究指出为了研究高超声速飞行器尖化前缘热环境特点,对尖化前缘外形进行测热测压风洞试验,同时利用数值分析和理论手段开展尖化前缘热环境预示方法研究。获得了两种小尺寸前缘半径尖化前缘外形压力和热流的分布规律,分析了在半径较小的情况下,经典的Fay-Riddell驻点热流计算公式和前缘后掠圆柱方法的适用性。研究结果表明,Fay-Riddell公式在小尺寸的情况下已不再适用,采用层流后掠圆柱方法可以模拟尖化前缘中心线上的热环境。(本文来源于《导弹与航天运载技术》期刊2019年06期)
衣春轮,刘燕斌,曹瑞,汤佳骏,朱鸿绪[4](2019)在《基于代理模型的高超声速飞行器外形参数优化》一文中研究指出针对高超声速飞行器分析复杂且难度较大,提出了一种代理模型的构建方法,使用代理模型近似替代性能分析与优化过程中含有复杂学科耦合的机理模型。根据巡航任务需求,确定了优化目标为静动态性能最优与模型差异最小。使用灵敏度分析的方法,建立了代理模型。将代理模型进行静动态性能分析,并与机理模型配平结果进行了对比验证,发现两个模型的配平特性趋势是完全一致的,迎角的数值差不足3%,升降舵偏转角的数值差仅在前体下倾角较大时偏大,约为20%。基于构建的代理模型与优化的性能指标,对模型的外形参数进行了配平性能优化与间隙度量优化,并与机理模型的优化结果与优化效率进行对比,发现两者结果相差不足2%,但使用代理模型的优化效率提高了456%,证明了基于代理模型的优化可以在确保精度的基础上提高优化效率。(本文来源于《航空动力学报》期刊2019年11期)
乔宇航,石泳,赵飞[5](2019)在《带级间连接托的高超声速飞行器分离干扰研究》一文中研究指出级间连接托可显着增加高超声速飞行器与助推器间的连接刚度,针对此种连接形式在级间分离阶段对飞行器带来的气动干扰问题,以类X-43A飞行器为研究对象,采用数值模拟方法对分离干扰机理进行了研究。研究表明:级间连接托导致飞行器在分离时产生较大附加低头力矩和升力,此种干扰是分离涡流区和激波/涡流相互作用的结果;考虑连接托的干扰影响时,飞行器运动轨迹与自由飞轨迹存在差别,尤其俯仰角变化显着不同。(本文来源于《航空计算技术》期刊2019年06期)
梁捷,秦开宇,陈力[6](2019)在《基于时延的高超声速飞行器终端滑模控制》一文中研究指出针对吸气式高超声速飞行器(AHV)再入过程中的复杂非线性、动力学模型通道间存在的强耦合及气动力系数和气动力矩系数摄动,提出了一种结合时延补偿控制与终端滑模控制的姿态控制方法.首先,以AHV再入飞行姿态动力学模型为基础,考虑气动参数摄动产生的模型不确定性,建立了面向控制算法设计的AHV再入飞行数学模型;然后,基于多时间尺度理论将该数学模型分解为双环子系统;为两个子系统分别设计时延补偿改进终端滑模控制算法,用来完成AHV的再入姿态控制;在改进终端滑模控制的基础上,采用工程上易于实现的时延补偿控制对模型不确定性进行精确估计,并基于李雅普诺夫理论证明了姿态角和姿态角速度的跟踪误差在有限时间内收敛到零.本算法设计简单,无须补偿项部分已知且易于工程实现.仿真结果表明所设计的基于时延补偿的改进控制算法具有调整时间短(1 s以内)、超调量小和良好的跟踪精度等优点.(本文来源于《华中科技大学学报(自然科学版)》期刊2019年11期)
蔡光斌,赵阳,张胜修,杨小冈[7](2019)在《高超声速飞行器鲁棒多目标线性变参数控制》一文中研究指出针对具有"乘波体"构型的吸气式高超声速飞行器纵向飞行姿态控制问题,提出了一种基于区域极点配置的鲁棒多目标线性变参数(LPV)控制系统设计方法。给出吸气式高超声速飞行器纵向非线性机理模型,在此基础上建立了刚性LPV模型;针对此类LPV模型,提出了基于区域极点配置的LPV状态反馈控制系统设计方法,将系统的鲁棒稳定性、干扰抑制、跟踪性能等性能指标通过扩展线性矩阵不等式约束的方式,实现了LPV系统的多目标鲁棒跟踪控制。同时,通过引入松弛变量的方法,解除了Lyapunov函数矩阵与系统矩阵之间的耦合影响,从而降低了控制系统设计的保守性,得到了满足期望性能要求的LPV状态反馈鲁棒跟踪控制器。所设计的控制器应用于高超声速飞行器的非线性机理模型进行数值仿真验证,仿真结果表明:所设计的控制器能够使得闭环反馈控制系统有效地跟踪指令信号变化,系统动态性能良好且具有较强的抗干扰能力。(本文来源于《兵工学报》期刊2019年11期)
刘蓉,黄大庆,姜定国[8](2019)在《高超声速飞行器的反步滑模神经网络控制系统》一文中研究指出针对高超声速飞行器一体化气动布局导致弹性机体与推进系统间的强耦合性,以及跨大空域及高速飞行过程中导致气动特性存在强非线性、不确定性和明显的时变特性,提出一种基于小脑神经网络的高超声速飞行器反步滑模控制策略。首先建立高超声速飞行器纵向非线性数学模型,并采用输入-输出反馈线性化方法,解除多变量之间的耦合关系;然后设计基于反步法的滑模变结构控制器解决系统非匹配不确定性难题;同时为弥补反步滑模控制器鲁棒性不足缺点,利用自回归小脑神经网络(RCMAC)的在线非线性逼近、自学习能力和相应控制结构,设计基于RCMAC的反步滑模控制器。仿真试验结果表明,该方法下高超声速飞行器纵向的高度控制精度可达到0.5m,速度控制精度为0.1m/s,可以保证闭环系统全局稳定,且拥有良好的跟踪性能和鲁棒性能。(本文来源于《光学精密工程》期刊2019年11期)
任鹏飞,王洪波,周国峰[9](2019)在《基于自适应伪谱法的高超声速飞行器再入轨迹优化》一文中研究指出针对高超声速飞行器再入轨迹优化问题,建立考虑地球自转的叁自由度再入运动方程,以美国通用空天飞行器为对象建立再入约束模型。采用Legendre-Gauss-Radau配点对3种典型优化问题:最大纵程、最大横程及最小航迹角变化率问题进行离散,将连续时间最优控制问题转化为非线性规划问题。基于Legendre多项式近似理论,引入衰减系数构建相对误差估计关系式,并以此提出一种有效的自适应网格重构策略。最终获得了3种典型再入轨迹优化问题的最优解。仿真结果表明,该算法的求解结果与变步长Runge-Kutta-Fehlberg法积分一致。相比传统自适应伪谱法,其配点和区间分配更合理,迭代次数少,求解速度高,且对人工参数不敏感。(本文来源于《北京航空航天大学学报》期刊2019年11期)
刘晓岑,吴云洁,徐鹏[10](2019)在《考虑输入饱和的高超声速飞行器姿态控制》一文中研究指出针对高超声速飞行器姿态控制,利用滑模干扰观测器观测系统复合扰动并予以补偿,采用动态面控制方法处理非线性控制系统设计问题,同时考虑输入饱和问题,区别于直接对舵偏进行限幅,将控制输入扩张成一个新的变量进行控制器设计,在设计过程中采用双曲正切函数近似饱和函数。仿真结果显示,基于滑模观测器的动态面控制方法相比于单纯动态逆控制方法具有较强的鲁棒性,但两者的控制输入都是对舵偏强制限幅,这并不有利于系统的稳定性,而考虑输入饱和问题的飞行器的姿态控制不仅保证对姿态的精确跟踪,同时可保证控制输入更平滑且尖峰值相对更小。(本文来源于《系统仿真学报》期刊2019年11期)
高超声速飞行器论文开题报告
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
针对系统内不确定性参数摄动的高超声速飞行器(Hypersonic Vehicles,HV)模型,考虑到传统气动系数简化模型无法真实反映飞行器的气动特性和高超声速下某些不确定性参数摄动的问题,提出了一种改进的气动系数模型,利用改进模型得到准确的气动系数参数,设计了一种基于某些不确定参数的模糊函数逼近的高超声速飞行器滑模控制器。应用模糊函数的强大函数逼近能力对不确定参数进行逼近,应用非线性最小二乘法对改进的气动系数模型进行参数辨识,并与滑模变结构控制结合,提高了系统的鲁棒性,并实现了对系统指令的稳定跟踪控制。仿真结果表明,飞行器在加入速度阶跃指令和高度阶跃指令后,系统能够保持稳定性,并对不确定性参数具有很强的鲁棒性。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
高超声速飞行器论文参考文献
[1].黄笠舟,施崇广,郑晓刚,李怡庆,尤延铖.高超声速飞行器一体化方法研究[J].航空发动机.2019
[2].李兴格,李刚,熊思宇.不确定参数摄动的高超声速飞行器滑模控制[J].导弹与航天运载技术.2019
[3].高莹莹,杨凯威,孔维萱,景昭,杨驰.高超声速飞行器尖化前缘气动热环境研究[J].导弹与航天运载技术.2019
[4].衣春轮,刘燕斌,曹瑞,汤佳骏,朱鸿绪.基于代理模型的高超声速飞行器外形参数优化[J].航空动力学报.2019
[5].乔宇航,石泳,赵飞.带级间连接托的高超声速飞行器分离干扰研究[J].航空计算技术.2019
[6].梁捷,秦开宇,陈力.基于时延的高超声速飞行器终端滑模控制[J].华中科技大学学报(自然科学版).2019
[7].蔡光斌,赵阳,张胜修,杨小冈.高超声速飞行器鲁棒多目标线性变参数控制[J].兵工学报.2019
[8].刘蓉,黄大庆,姜定国.高超声速飞行器的反步滑模神经网络控制系统[J].光学精密工程.2019
[9].任鹏飞,王洪波,周国峰.基于自适应伪谱法的高超声速飞行器再入轨迹优化[J].北京航空航天大学学报.2019
[10].刘晓岑,吴云洁,徐鹏.考虑输入饱和的高超声速飞行器姿态控制[J].系统仿真学报.2019