导读:本文包含了无尾飞翼飞行器论文开题报告文献综述及选题提纲参考文献,主要关键词:Nonlinear,Dynamic,Inversion,Nonlinear,Control,Allocation,Control,Coupling,Overactuated,Systems
无尾飞翼飞行器论文文献综述
Jahanzeb,Rajput[1](2016)在《无尾飞翼式飞行器的非线性控制设计与控制分配方法研究》一文中研究指出In this work we study several issues related to the nonlinear control of an overactuated flying wing aircraft.There are three major topics which are studied here.Robust nonlinear dynamic inversion(NDI),robust nonlinear control allocation,and control interaction or control coupling.The directional stability and control is crucial for the low-speed flight of a flying-wing aircraft.The split drag-rudders are well known devices used to provide directional stability and control in a flying-wing aircraft.As opposed to conventional rudders,the control efficiency of split drag-rudders is typically low for small deflection-angles and the influence on yawing moment is nonlinear.Such characteristics limit the control capability of split drag-rudders at low speed flight with large angle of attack.In this work,a new and simple method is presented to improve the control efficiency of split drag-rudders at low speed flight with large angle of attack.The method results in a strictly differential configuration of split drag rudders that operates around a certain bias or offset input.For last three decades,the NDI has become increasingly popular technique for the flight control design.This is due to the fact that an NDI controller provides good performance,over the complete flight envelope,with ideally requiring no gain-scheduling.Modern high angle of attack fighter aircrafts F-18,F-35,and crew return vehicle X-38 are the examples of high performance aircrafts,in which NDI was successfully used.However,it is difficult to find any significant evidence of use of NDI for the control of a flying wing aircraft.Flying wings are usually designed for high altitudes and long ranges.They are also required to operate at wide range of speeds.This wide variation in altitude and speed significantly alters the dynamics of aircraft in different operating regimes.Thus,it is very plausible to use NDI for the control of a flying wing aircraft.In this work a new Robust NDI design is presented for the flying wing aircraft.The complete NDI control law consists of three parts.The onboard aircraft model(OBAC)or simply the internal model,dynamic inversion control law,and control allocation method.Traditionally,the internal model is implemented in the form of polynomial functions,which are obtained through least square polynomial fitting.However,the aerodynamic data,which is obtained through wind tunnel testing or computational fluid dynamics(CFD)simulation,is inherently piecewise linear function of flight states and control surface deflections.The canonical piecewise linear representation is a popular technique to model piecewise linear functions.This technique has been used extensively for the analysis and simulation of electrical circuits.In this work,we exploit the piecewise linear nature of aerodynamic data and propose a new method of constructing the internal model,which is based on canonical piecewise linear representation.Uncertainty always exists in the internal model,even in the most accurately approximated one.Since,the standard NDI control relies on the accurate internal model,its performance may be degraded if uncertainty is present in the model.This problem has been addressed previously by combining robust techniques like H_∞synthesis andμ-synthesis with the NDI.A rather different approach,called incremental NDI(INDI),uses the angular acceleration feedback to make the NDI control law insensitive or robust to the parametric uncertainties.The INDI techniques proposed in past were designed by assuming that the control effectiveness is the linear function of control surface deflection.Furthermore,the previous INDI designs were proposed for the conventional aircrafts with three control variables aileron,elevator and rudder.In this thesis,we extend the existing INDI control design to the case of an overactuated aircraft with nonlinear moment versus deflection relationships.This is done by integrating a nonlinear control allocation algorithm,like redistributed pseudoinverse(RPI)with locally affine effectiveness,with the main INDI control law.Consequently,the nonlinear control allocation algorithm integrated with the main INDI control law results in the robust nonlinear control allocation.In landing phase,usually a tight flight path control is required.In this phase it is reasonable to track the flight path angle instead of pitch angle.In this thesis,a new longitudinal control law is also presented,in which the inner loop and control allocation is based on INDI control;however,the outer longitudinal control loop uses the backstepping based flight path angle control.Furthermore,the effects of sideslip angle on the effectiveness of the split drag rudders are modeled within the nonlinear control allocation algorithm,and the control allocation performance is tested in simulation for landing phase in presence of lateral wind disturbance.Finally,a solution to the problem of nonlinear control allocation in presence of control coupling is presented.Traditionally,the control coupling is ignored in the control allocation problem.However,there are the cases in which it may not be ignored.The only available technique for incorporating control coupling effects in the control allocation algorithm is based on the second-order Maclaurin Expansion,which can approximate the coupling only near the origin.In this thesis,we present a new modeling technique,which is based on the local approximation of non-separable function using two-dimensional first-order Taylor Expansion.The technique makes it possible to incorporate,in the control allocation algorithm,the control coupling effects for the complete range of control surface deflection,thus resulting in accurate nonlinear control allocation.(本文来源于《西北工业大学》期刊2016-01-01)
高春岩[2](2008)在《无尾飞翼式飞行器主动控制的参数化方法》一文中研究指出本文研究的控制对象是一种重于空气的固定翼无尾飞翼布局飞行器,要求该种布局飞行器能够以亚声速在高空范围内长时间飞行,实现非常规气动布局飞行器主动控制技术。涉及放宽静稳定性技术、主动颤振抑制技术,为无尾飞翼布局飞行器提供可靠的安全飞行策略。飞行器采用无尾飞翼布局技术,这种布局飞行器翼身融合一体,且没有水平安定面和垂直尾翼,在机翼后缘沿机体向外布置升降副翼和对开式阻力方向舵,因而纵向和侧向自然稳定性下降,甚至静不稳定。这种静不稳定的飞翼式飞行器在没有放宽静稳定功能的电传操纵系统的情况下是难以实现操纵的,必须通过纵向、侧向控制增稳系统来实现放宽静稳定性技术。本文以无尾飞翼飞行器横航向控制系统为研究对象,分析了无尾飞翼布局飞行器在高空飞行状态的自然稳定性,并介绍了基于特征结构配置的参数化方法,基于该方法设计了横航向主动控制律,实现了无尾飞翼飞行器协调转弯机动动作。由于对这种布局的飞行器具有长航时的性能要求,为此该类飞行器普遍具有大展弦比或超大展弦比;另外,这种飞行器还要求能在高空飞行,飞行器需要采用柔性智能材料来减轻质量,以增大升阻比,因而这种飞行器又具有重量轻,柔性大的特点。随着柔性的增大,加上无尾飞翼布局使整机成为一个巨大的升力面,机翼的颤振现象突出,严重情况会造成机体结构破坏。因而需通过主动颤振抑制来提供飞行器稳定飞行的可靠性。本文以叁自由度二元机翼气动弹性控制系统为研究对象,利用输出反馈次优控制法和线性矩阵不等式法,设计了颤振主动抑制控制律,提高了飞行器的颤振临界速度,实现了颤振抑制主动控制技术。(本文来源于《哈尔滨工业大学》期刊2008-06-01)
无尾飞翼飞行器论文开题报告
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文研究的控制对象是一种重于空气的固定翼无尾飞翼布局飞行器,要求该种布局飞行器能够以亚声速在高空范围内长时间飞行,实现非常规气动布局飞行器主动控制技术。涉及放宽静稳定性技术、主动颤振抑制技术,为无尾飞翼布局飞行器提供可靠的安全飞行策略。飞行器采用无尾飞翼布局技术,这种布局飞行器翼身融合一体,且没有水平安定面和垂直尾翼,在机翼后缘沿机体向外布置升降副翼和对开式阻力方向舵,因而纵向和侧向自然稳定性下降,甚至静不稳定。这种静不稳定的飞翼式飞行器在没有放宽静稳定功能的电传操纵系统的情况下是难以实现操纵的,必须通过纵向、侧向控制增稳系统来实现放宽静稳定性技术。本文以无尾飞翼飞行器横航向控制系统为研究对象,分析了无尾飞翼布局飞行器在高空飞行状态的自然稳定性,并介绍了基于特征结构配置的参数化方法,基于该方法设计了横航向主动控制律,实现了无尾飞翼飞行器协调转弯机动动作。由于对这种布局的飞行器具有长航时的性能要求,为此该类飞行器普遍具有大展弦比或超大展弦比;另外,这种飞行器还要求能在高空飞行,飞行器需要采用柔性智能材料来减轻质量,以增大升阻比,因而这种飞行器又具有重量轻,柔性大的特点。随着柔性的增大,加上无尾飞翼布局使整机成为一个巨大的升力面,机翼的颤振现象突出,严重情况会造成机体结构破坏。因而需通过主动颤振抑制来提供飞行器稳定飞行的可靠性。本文以叁自由度二元机翼气动弹性控制系统为研究对象,利用输出反馈次优控制法和线性矩阵不等式法,设计了颤振主动抑制控制律,提高了飞行器的颤振临界速度,实现了颤振抑制主动控制技术。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
无尾飞翼飞行器论文参考文献
[1].Jahanzeb,Rajput.无尾飞翼式飞行器的非线性控制设计与控制分配方法研究[D].西北工业大学.2016
[2].高春岩.无尾飞翼式飞行器主动控制的参数化方法[D].哈尔滨工业大学.2008
标签:Nonlinear; Dynamic; Inversion; control; Allocation; Coupling; Overactuated; Systems;