职业院校开展数学建模的探索与研究

职业院校开展数学建模的探索与研究

张学清山东省莱芜市技师学院271100

面对二十一世纪,高职院校的教育应以培养应用型人才为目标,人才的知识能力结构是应用型,而不是学术型;要按照应用型能力结构,重新构建理论和实践教学的体系,培养的应用能力应为创造性。开展数学建模活动的宗旨是:创新意识、团队精神、重在参与、公平竞争。数学建模活动极大地激发了学生学习数学的积极性,培养了学生建立数学模型和运用计算机技术解决实际问题的综合能力,培养了创新精神和合作意识。

一、高职院校数学教育的现状及开展数学建模活动的必要性

高等数学是理工经济类学生必修的基础理论课,其目的在于培养职业技术人才所必须的数理统计等几部分组成,课程内容存在重经典、轻现代;重连续、轻离散;重分析推导、轻数值计算;重运算技巧、轻数学思想方法的趋向,而且各部分内容自成体系,过分强调各自的系统性与基本数学素质。目前,国内许多高职院校的数学课程主要是由微积分、线性代数、概率论与整性,缺乏应用性和相互联系。在这种体系下,不仅需要大量的教学时数,而且不利于学生综合利用数学知识能力的培养,联系实际的领域也不够宽阔。

为解决上述问题,培养二十一世纪的技术应用型人才,数学建模活动以其对学生知识、能力、素质的综合培养,成为高职院校数学教学改革的有力手段。它是在基础课和专业课之间架起的一座桥梁,通过数学建模活动的开展,侧重培养学生综合运用数学知识分析和解决实际问题的能力,增强创新意识和科学计算的能力,开拓知识面,从而推动数学教学思想、内容和体系、方法和手段的改革。

二、在高职院校中开展大学生数学建模活动的可行性分析

1.开展数学建模活动是高职数学课程教学改革的需要

高等职业教育的培养目标是为生产服务和管理第一线培养实用型人才,根据这个目标,高职数学课程的教学改革应以突出数学的应用性为主要的突破点。高职数学课程的一个重要的任务,就是培养学生用数学原理和方法解决实际问题的能力。在高职院校中开展数学建模活动,以此推动高职数学课程的改革应该是一个很好的做法。开展数学建模活动的出发点就在于培养高职学生使用数学工具和运用计算机解决实际问题的意识和能力,进而推动高职数学课程教学的改革。

2.开展数学建模活动,能加速应用数学人才和复合人才的培养

开展数学建模活动,能促进数学理论研究专门人才和应用型数学人才的培养。进入21世纪以来,高新科学技术发展突飞猛进,各行各业的应用型人才显得十分缺乏。

正是考虑到应用型数学人才的培养的重要性,国际和国内的数学建模竞赛在近十年来迅速发展。数学建模竞赛的题目由日常生活、工程技术和管理科学中的实际问题简化加工而成,它不要求有十分高深的数学知识,但涉及的面很广;并且一般没有事先设定的严格的标准答案,但留有充分的余地供参赛者发挥聪明才智和创造精神。数学建模活动采用开放式,可查阅资料和使用计算机,每个参赛队由三人组成,可自由组合,也可跨系、跨专业组队,参赛队必须在三天的时间内完成一篇包括模型的假设、建立和求解,计算方法的设计和实现,结果的分析和检验,模型的改进等方面的论文。参赛小组在完成论文的过程中,可以通过各种手段来收集资料,因此,开展数学建模竞赛对于加速高职院校培养应用型的人才和复合型人才具有十分积极的推动和促进作用。

3.开展数学建模活动,能扩大学生的知识面

数学建模活动所涉及的内容很广,用到的知识面比较宽,不但包含了较广泛的数学基础知识和各种数学方法技巧,而且联系到各种各样实际问题的背景:如生物、物理、医学、化学、生态、经济、管理等。我们认识到单靠数学系的老师担当指导教师对学生进行这些方面的知识传授可能不够深入全面。因此,学生在课下还需要自学。这样大大丰富了学生的知识面,开拓了学生在数学方面的视野。参加数学建模培训的同学均有这种深刻体会。

4.开展数学建模活动,有助于培养学生的创新能力

现代教育思想的核心是培养学生创新意识及能力,而能力是在知识的教学和技能的训练中,通过有意识地培养而得到发展的。教学中,数学建模方法和思想的融入,有助于激发学生的原创性冲动,唤醒学生进行创造性工作的意识,因为建模本身就是一项创造性思维活动,它既有一定的理论性,又有较强的实践性。既要求思维的数量,又要求思维的深刻性和灵活性,其关键是把实际问题抽象为数学问题,这就要求学生具有一定的转化能力,而且要有相当的观察、分析、类比等各种综合能力。对一个实际问题而言,一般不是只有一个正确模型,许多不同的模型都可以用来解决相同的问题,而同一个抽象模型又可以用于解决不同的具体问题,它没有固定的方法和规定的数学工具,也没有现成的答案、模式可以遵循。其结果只有更好,没有最好。这样数学建模本身就给学生提供了一个自我学习,独立思考,认真探索的实践过程。给学生带来了灵活的思维方式,开拓了学生的视野。它鼓励学生深层次思考问题,为学生提供了一个发挥创造性才能的氛围和条件。通过建模,学生要从错综复杂的实际问题中,抓住问题的要点,使问题逐渐明确,并将问题中的联系归成一类,揭示出它们的本质特征,得出解决问题的重点与难点,自觉地运用所给问题的条件寻求解决问题的最佳方案和途径,这一过程能充分发挥学生丰富的想象力和创新能力。

数学建模活动是一种知识性和应用性相结合的实践活动。在高职院校开展数学建模活动有助于培养高职学生的实践能力和动手能力以及分析问题和解决问题的能力,为学生以后从事技术性工作奠定良好的基础。

标签:;  ;  ;  

职业院校开展数学建模的探索与研究
下载Doc文档

猜你喜欢