论文摘要
滚动轴承作为旋转机械的“关节”,是旋转机械中应用最广泛的零部件之一,故障率高且寿命离散性大。开展滚动轴承状态监测和故障诊断研究,对于评估旋转机械运行状态,保障设备安全稳定运行具有重要的意义,同时也为设备视情维护提供了可靠依据。本文以滚动轴承为研究对象,以振动信号为分析媒介,针对目前应用最广泛的Kurtogram类共振解调预处理算法展开研究,总结了该类算法在处理滚动轴承振动信号时,面对多种常见干扰所表现出的局限性,提出了相应的解决方案。论文主要内容及创新点如下:(1)归纳了 Kurtogram 类衍生算法(Kurtogram、SE Infogram/SES Infogram)的基本构造原理,分析了时域统计特征指标(峭度、平方包络负熵)和频域统计特征指标(包络谱峭度、平方包络谱负熵)对非周期性瞬变特征、周期性循环冲击特征及噪声的敏感性,总结了 Kurtogram类算法处理三种常见问题(谐波干扰、复合故障问题及非周期瞬态成分干扰)时所表现出的局限性。(2)针对主轴转频和齿轮啮合频率引入的特定谐波成分对频域统计特征指标定义的Kurtogram类衍生算法(Protrugram、SES Infogram)产生干扰的问题,提出一种自适应窄带陷波预处理方法。以粒子群陷波参数寻优算法对窄带陷波参数进行最优化选择,降低人为因素影响,最大限度去除谐波成分,并尽可能保留周期性冲击特征,采用波形匹配方差对陷波结果进行验证,所提方法提高了陷波效率及准确性,为后续的共振解调分析提供便利。(3)针对复合故障情况下,Kurtogram类算法在时域/频域统计特征趋于最大化的过程中,次频带易被主频带掩盖导致次频带内故障成分丢失而造成的漏诊和误诊问题,提出基于周期性故障冲击特征匹配的最大相关峭度解卷积滤波器组预处理方法和基于频带划分的变分模态分解预处理方法,对解卷积逆滤波后的滤波分量或变分模态分解后的各阶模态分量分别进行Kurtogram类算法分析,有效避免了因共振频带淹没造成的误诊和漏诊。(4)受运行环境及传递路径影响,滚动轴承振动信号中引入了强背景噪声和较大的非周期性瞬态冲击成分,而峭度/平方包络负熵等时域统计指标对非周期瞬态成分敏感,在低信噪比时鲁棒性较差,无法准确定位故障引起的周期性循环冲击特征所在频带,针对这一问题,提出了以时域teager能量负熵和频域teager能量谱负熵为统计特征指标的频带检测方法,提升对周期性循环冲击特征的检测能力,并通过计算故障状态下与正常基准状态下的TEE(Teager Energy neg-Entropy)比值构建TEERgram,进一步抑制相对稳定的强噪源干扰。(5)针对小样本且无法预知聚类种数的轴承故障类型和故障程度识别问题,提出了一种以小波包子带归一化时频TEE构建特征向量,以MS-FCM为聚类算法的故障识别方法。通过对振动信号进行小波包分解,计算各子带小波包系数的时频TEE并进行归一化离散数据处理,构建了能够反应振动信号时域、频域特征的特征向量。该特征向量能够有效表征故障特征,对类间成分具有明显的区分性。模糊C均值聚类中需要预先设定聚类数目,对于小样本且无法预知聚类数目的情况下难以准确分类,针对这一问题提出了 Meanshift辅助预处理方法,能够自适应地搜索数据概率密度分布较大区域作为初始位置,初始位置个数作为初始聚类数目,进而进行模糊C均值聚类更新隶属度和聚类中心,判定聚类类别。
论文目录
文章来源
类型: 博士论文
作者: 张雄
导师: 万书亭
关键词: 滚动轴承,故障诊断,类算法,时域,频域统计特征,改进的模糊均值聚类
来源: 华北电力大学(北京)
年度: 2019
分类: 工程科技Ⅱ辑,信息科技
专业: 机械工业,计算机软件及计算机应用
单位: 华北电力大学(北京)
基金: 国家自然科学基金(51777075),中央高校基本科研业务费专项资金资助项目(2018QN093)
分类号: TP301.6;TH133.33
DOI: 10.27140/d.cnki.ghbbu.2019.000038
总页数: 138
文件大小: 17978K
下载量: 1052