论文摘要
Inferring Gene Regulatory Networks(GRNs) structure from gene expression data has been a challenging problem in systems biology. It is critical to identify complicated regulatory relationships among genes for understanding regulatory mechanisms in cells. Various methods based on information theory have been developed to infer GRNs. However, these methods introduce many redundant regulatory relationships in the network inference process due to external noise in the original data, topology sparseness in the network structure, and non-linear dependency among genes. Especially as the network size increases, the performance of these methods decreases dramatically. In this paper, a novel network structure inference method named Loc-PCA-CMI is proposed that first identifies local overlapped gene clusters, and then infers the local network structure for each cluster by a Path Consistency Algorithm based on Conditional Mutual Information(PCA-CMI). The final structure of the GRN is denoted as dependence among genes by an ensemble of the obtained local network structures. Loc-PCA-CMI was evaluated on DREAM3 knock-out datasets, and its performance was compared to other information theorybased network inference methods including ARACNE, MRNET, PCA-CMI, and PCA-PMI. Experimental results demonstrate our novel method Loc-PCA-CMI outperforms the other four methods in DREAM3 datasets especially in size 50 and 100 networks.
论文目录
文章来源
类型: 期刊论文
作者: Xiang Chen,Min Li,Ruiqing Zheng,Siyu Zhao,Jianxin Wang,Fang-Xiang Wu,Yaohang Li
来源: Tsinghua Science and Technology 2019年04期
年度: 2019
分类: 工程科技Ⅱ辑,基础科学,信息科技
专业: 生物学,互联网技术
单位: the School of Computer Science and Engineering, Central South University,the Department of Mechanical Engineering and Division of Biomedical Engineering,University of Saskatchewan,the Department of Computer Science, Old Dominion University
基金: supported in part by the National Natural Science Foundation of China(Nos.61622213and 61732009),the 111 Project(No.B18059),the Hunan Provincial Science and Technology Program(No.2018WK4001)
分类号: Q811.4;TP393.02
页码: 446-454
总页数: 9
文件大小: 568K
下载量: 49
相关论文文献
- [1].LIVING the DREAM[J]. The World of Chinese 2020(02)
- [2].《About dream》[J]. 中国民族博览 2019(02)
- [3].DO BEST DREAM BEYOND[J]. 南方建筑 2019(05)
- [4].boy's dream[J]. 美与时代(中) 2017(11)
- [5].CHINA DREAM or CHINESE DREAM based on COCA[J]. 海外英语 2016(08)
- [6].《DREAM TRAVEL》[J]. 美苑 2015(S2)
- [7].《JUST A DREAM》[J]. 美苑 2015(S2)
- [8].《DREAM OF YOU》[J]. 美苑 2015(S2)
- [9].《WONDERFUL DREAM》[J]. 美苑 2015(S2)
- [10].Symbols in the Great Gatsby[J]. 校园英语 2016(31)
- [11].小时候的梦想(英文)[J]. 阅读 2017(Z5)
- [12].My Dreams[J]. 中学生英语 2017(Z1)
- [13].Morality-improvement in Great Expectations[J]. 校园英语 2017(05)
- [14].The functions of Mrs. Wilson in The Great Gatsby[J]. 校园英语 2017(09)
- [15].My dream[J]. 小学生作文辅导(读写双赢) 2017(02)
- [16].This is Me[J]. 小学生作文辅导(读写双赢) 2017(03)
- [17].My Dream[J]. 疯狂英语(小学版) 2017(07)
- [18].划,划,划你的小船[J]. 小学生学习指导 2017(Z5)
- [19].当我长大[J]. 时代英语(高二) 2017(05)
- [20].Always have a dream[J]. 语数外学习(初中版) 2017(10)
- [21].The left dream of Guge[J]. China's Tibet 2015(06)
- [22].My Dream[J]. 阅读 2009(11)
- [23].Hold on to Your Dream[J]. 中学生天地(C) 2010(Z1)
- [24].Discover your dream[J]. 电脑爱好者 2010(19)
- [25].失望的“梦”[J]. 拳击与格斗 2009(12)
- [26].针对DREAM基因序列外显子的siRNA设计[J]. 现代生物医学进展 2012(01)
- [27].DREAM的两个亚型A和B在小鼠神经和非神经组织中的表达[J]. 神经解剖学杂志 2012(05)
- [28].Building the DREAM interactome[J]. Science China(Life Sciences) 2011(08)
- [29].My Beautiful Dream[J]. 疯狂英语(初中版) 2018(06)
- [30].Question & Answer[J]. 初中生必读 2018(11)