真菌窗烷类杀虫活性倍半萜penifulvin A生物合成的研究

真菌窗烷类杀虫活性倍半萜penifulvin A生物合成的研究

论文摘要

Penifulvin A是由灰黄青霉菌(Penicillium griseofulvum NRRL 35584)产生的具有独特结构的倍半萜类天然产物,其拥有五个立体手性中心,结构中的四个稠环共用中心的季碳原子,形成一个罕见的二氧-[5.5.5.6]-窗烷结构,且其中的两个γ-内酯环和δ-内酯环共享一个手性缩醛中心。生物活性研究显示,penifulvin A具有高效专一的草地贪夜蛾的幼虫(农作物主要害虫之一,尤其是玉米)杀虫活性,被评价为最具开发价值的创新型生物农药之一。鉴于其新颖独特的化学结构以及良好的生物活性,penifulvin A引起了化学家和生物学家广泛关注,目前化学家已借助逆合成分析和间位-光环加成反应实现了penifulvin A的化学全合成,但在立体选择性构建二氧-[5.5.5.6]-窗烷骨架时仍存在一定难度。相对于化学全合成,penifulvin A的生物合成机制却一直未见报道。因此,penifulvin A生物合成途径的研究,有望指导化学仿生合成,同时其特殊的化学结构也必然蕴藏着独特的酶学合成机制。基于此目标,本课题从P.griseofulvum NRRL 35584中鉴定了penifulvin A生物合成基因簇(peni),通过生物信息学分析、体内基因敲除、化合物喂养、体外生物酶催化以及异源生物合成的方法与手段,系统阐明了penifulvin A的生物合成机制,由此深刻解析了自然界中独特窗烷骨架结构的生物合成过程,为后续通过组合生物合成技术对不同窗烷类型天然产物进行改造,从而获得结构更加新颖、杀虫活性更强的衍生物,奠定了坚实的理论和物质基础。本研究完成工作如下:(1)Penifulvin A的发酵条件及其检测分离方法的确定。外界环境因素是影响微生物代谢谱变化的重要原因,为了确定研究penifulvin A生物合成的物质基础,首先确定了P.griseofulvum NRRL 35584在实验室培养条件下生产penifulvin A的条件。小量发酵实验显示,P.griseofulvum NRRL35584在25℃,大米培养基上发酵七天的条件下,能够稳定生产penifulvin A,并通过后续的分离和结构鉴定进行验证。Penifulvin A生产及其检测分离条件的确定,为后续各突变株培养条件和中间体的检测与分离奠定了良好的工作基础。(2)Penifulvin A生物合成基因簇(peni)的鉴定。通过真菌次级代谢基因簇分析网站(anti-SMASH fungal version)预测发现,P.griseofulvum NRRL 35584的全基因组中含有六个萜类次级代谢产物生物合成相关的基因簇。利用结构导向的萜类环化酶系统进化树分析策略,scaffold 14中的萜类生物合成基因簇(peni)被认为与penifulvin A的产生可能有关。生物信息学分析表明,peni基因簇中共含有六个基因,除了倍半萜环化酶基因(peniA)外,还有细胞色素P450单氧化酶基因(peniB),核黄素依赖的单氧化酶基因(peniC),两个双氧化酶基因(peniD和peniF)以及一个未知功能蛋白基因(peniE)。RT-PCR结果显示,peni基因簇的转录与penifulvin A的产生成对应关系。倍半萜环化酶基因(peniA)的进一步敲除结果显示,基因peniA敲除突变株完全丧失了penifulvinA的生产能力,由此清晰地明确了peni基因簇与penifulvinA生产的相关性。peni基因簇的确定,是阐明penifulvin A生物合成机理的重要前提。(3)Penifulvin A生物合成相关基因的确定。peniBpeniF五个基因的逐个敲除以及peniDpeniF三个基因同时敲除的结果显示,peniB或peniC的单基因缺失,P.griseofulvum NRRL 35584均会丧失penifulvin A的生产能力。但是,peniDpeniF三个基因的单独缺失或同时缺失,均不会影响penifulvin A的产生。该结果表明,peni基因簇中仅peniApeniC三个基因可能与penifulvin A的生物合成相关。进一步的研究显示,通过在异源宿主A.nidulans A1145中共表达peniApeniC三个基因,penifulvin A能够高效产生,证明penifulvin A的生物合成确实仅需要peniA、peniB和peniC三个基因参与。通过基因敲除及其异源宿主生产结果揭示了自然界中独特二氧-[5.5.5.6]-窗烷杂环的构建过程仅需三个基因参与。(4)倍半萜环化酶PeniA催化功能的研究。通过大肠杆菌中异源表达peniA基因,获得了可溶性的PeniA重组蛋白。体外酶活实验表明,1)PeniA能够催化法呢基焦磷酸(FPP)环化为化合物209,经GC-MS数据库比对确定,该化合物与角三环倍半萜silphinene的断裂碎片一致;2)PeniA对FPP显示出严格的底物选择性,并不能催化GPP和GGPP生产对应的环化产物。酵母异源表达实验证实,基因peniA的酵母高表达菌株能够高效生产化合物209,进一步的分离与核磁鉴定证实209确实为三环倍半萜silphinene。因此,PeniA为之前并未报道过的silphinene倍半萜环化酶。通过对PeniA体外催化功能的研究以及silphinene结构的确认,我们推导了PeniA催化FPP到silphinene的整个环化机理。化合物209的化学喂养结果表明,其能够恢复ΔpeniA突变株penifulvin A的生产能力,从而证实了silphinene为penifulvin A合成的重要前体,这为后续氧化后修饰酶(PeniB和PeniC)催化功能的研究提供了重要的物质支撑。(5)细胞色素P450氧化酶PeniB催化功能的研究。生物信息学分析显示,PeniB为细胞色素P450单加氧酶。peniA和peniB基因的共表达A.nidulans菌株(AN-peniAB)产生三个产物,分别为silphinene-15-oic acid(203)、γ-lactone-2-hydroxy[5.5.5.5]fenestrane(210)和γ-lactone-2-keto[5.5.5.5]fenestrane(211),该结果说明,PeniB作为多功能P450氧化酶,其能够连续催化silphinene的多步氧化反应。PeniB微粒体复合物的体外酶活实验结果表明了PeniB的氧化过程,1)催化209中C-15位甲基的三步氧化反应得到羧基产物203;2)PeniB氧化化合物203得到化合物210;3)PeniB继续催化化合物210 C-2羟基的脱氢反应得到211。化合物203/210/211分别化学喂养ΔpeniA突变株均能恢复penifulvin A的产生,由此证明了PeniB对化合物209的三步氧化产物均为penifulvin A生物合成的重要中间体,其中化合物203到化合物210的转化过程,是构建第一个γ-内酯环的关键一步。由此,推导了PeniB可能通过催化化合物203 C-15位的羧基自由基加成C1-C2的双键或者C-15的羧基进攻C1-C2位的环氧两种机理得到210。为了验证PeniB的反应机理,首先通过化学衍生的方法,获得了化合物203的C-15羧基甲酯化产物214。PeniB与化合物214的体外酶活结果显示,PeniB的催化活性被完全抑制,由此说明C-15位羧基自由基的生成对化合物210中γ-内酯环的形成至关重要。(6)Baeyer-Villiger氧化酶PeniC催化功能的研究。从化合物211到最终产物penifulvin A,需要C1-C2位的位置专一选择性的Baeyer-Villiger氧化反应。生物信息学分析表明,PeniC确实为核黄素依赖的Baeyer-Villiger氧化酶,其可能负责了化合物211到penifulvin A的转化。peniA、peniB和peniC三个基因共表达A.nidulans(AN-peniABC)确实能够检测到终产物penifulvin A的产生。我们试图在大肠杆菌中得到可溶性PeniC蛋白去验证其催化化合物211到penifulvin A的转化,但经过多种尝试,PeniC或者其与其它标签的融合蛋白在大肠杆菌中均为不可溶表达。化合物211分别喂养ΔpeniB及ΔpeniC突变株的实验表明,211虽然能够恢复ΔpeniB突变株penifulvin A的产生,但是其并不能恢复ΔpeniC突变株penifulvin A的产生。由此间接证明了PeniC是催化化合物211形成penifulvin A的关键酶,通过催化C1-C2位的Baeyer-Villiger氧化反应形成δ-内酯环。(7)Penifulvin A生物合成途径的推导。通过对peniA、peniB和peniC基因功能及其对应蛋白催化功能的研究,推导了penifulvin A生物合成的可能途径,1)PeniA催化线性FPP前体环化得到角三环骨架倍半萜silphinene(209);2)PeniB催化209经多步氧化反应得到211,其间完成了γ-内酯环的构建;3)PeniC催化211发生C1-C2位的Baeyer-Villiger氧化反应形成δ-内酯环,从而得到终产物penifulvin A。Penifulvin A生物合成途径的阐明,为自然界中其它窗烷类天然产物生物合成的研究以及penifulvin类衍生物的合成生物学改造奠定了良好的基础。

论文目录

  • 中英文缩写一览表
  • 摘要
  • Abstract
  • 第一章 文献综述
  •   1.1 真菌活性天然产物的研究意义
  •   1.2 真菌萜类天然产物概述
  •     1.2.1 真菌萜类天然产物及其分类
  •     1.2.2 真菌倍半萜类天然产物的结构多样性
  •     1.2.3 真菌倍半萜类天然产物的活性多样性
  •     1.2.4 真菌萜类天然产物的生源途径研究
  •     1.2.5 真菌倍半萜类天然产物的生物合成研究
  •   1.3 窗烷结构天然产物的研究进展
  •     1.3.1 窗烷结构天然产物的发现
  •     1.3.2 窗烷结构天然产物的化学合成研究
  •   1.4 Penifulvins研究概述
  •     1.4.1 Penifulvins的发现及其生物活性
  •     1.4.2 Penifulvins的化学合成研究
  •     1.4.3 Penifulvin A假想生物合成途径的推测
  •   1.5 研究目的及意义
  • 第二章 材料与方法
  •   2.1 实验材料
  •     2.1.1 菌株
  •     2.1.2 质粒
  •     2.1.3 引物
  •     2.1.4 本课题所用到的主要培养基及其配置方法
  •     2.1.5 本课题所用到的主要试剂及其配制方法
  •     2.1.6 主要仪器
  •   2.2 实验方法
  •     2.2.1 菌种保藏
  •     2.2.2 灰黄青霉菌及构巢曲霉菌的培养
  •     2.2.3 灰黄青霉菌及构巢曲霉菌原生质体的制备及转化
  •     2.2.4 灰黄青霉菌基因组DNA的提取
  •     2.2.5 灰黄青霉菌总RNA的提取及RT-PCR反应
  •     2.2.6 目的DNA片段PCR
  •     2.2.7 DNA片段的回收
  •     2.2.8 重组质粒的构建
  •     2.2.9 大肠杆菌感受态细胞的制备
  •     2.2.10 大肠杆菌感受态细胞的转化
  •     2.2.11 大肠杆菌质粒DNA的提取
  •     2.2.12 大肠杆菌质粒DNA的少量快速提取及检测
  •     2.2.13 酵母感受态细胞的制备及转化
  •     2.2.14 酵母质粒的提取
  •     2.2.15 大肠及酵母阳性转化子的PCR鉴定
  •     2.2.16 大肠杆菌重组蛋白的表达及纯化
  •     2.2.17 镍柱的再生及保存
  •     2.2.18 SDS-PAGE凝胶电泳
  •     2.2.19 样品的分析方法
  •     2.2.20 化合物分离及结构鉴定方法
  •     2.2.21 生物信息学的分析方法
  • 第三章 Penifulvin A产生菌株灰黄青霉菌的发酵验证
  •   3.1 前言
  •   3.2 结果与分析
  •     3.2.1 Penifulvin A产生菌株P.griseofulvum NRRL35584 的发酵检测
  •     3.2.2 Penifulvin A的发酵及分离
  •     3.2.3 Penifulvin A的结构确定
  •   3.3 小结与讨论
  • 第四章 Penifulvin A生物合成基因簇的确定及其生物信息学分析
  •   4.1 前言
  •   4.2 结果与分析
  •     4.2.1 P.griseofulvum NRRL35584 基因组中萜类次级代谢产物基因簇的分析
  •     4.2.2 Penifulvin A生物合成基因簇的预测
  •     4.2.3 P.griseofulvum中 peni基因簇的基因功能分析及转录检测
  •     4.2.4 Penifulvin A生物合成基因簇的确定
  •     4.2.5 Penifulvin A生物合成途径的重新推导
  •   4.3 小结与讨论
  • 第五章 peni基因簇中倍半萜环化酶PeniA的功能研究
  •   5.1 前言
  •   5.2 结果与分析
  •     5.2.1 PeniA的生物信息学分析
  •     5.2.2 基因peniA的敲除及其突变株代谢产物分析
  •     5.2.3 基因peniA在酵母中异源表达及其产物(209)分析
  •     5.2.4 化合物209 的分离及结构鉴定
  •     5.2.5 化合物209 化学喂养ΔpeniA突变株
  •     5.2.6 PeniA蛋白体外酶催化功能验证
  •     5.2.7 PeniA蛋白的底物宽泛性研究
  •     5.2.8 PeniA催化FPP环化机制推导
  •   5.3 小结与讨论
  • 第六章 peni基因簇中P450 单氧化酶PeniB的功能研究
  •   6.1 前言
  •   6.2 结果与分析
  •     6.2.1 PeniB的生物信息学分析
  •     6.2.2 基因peniB的敲除及其突变株发酵检测
  •     6.2.3 基因peniB在构巢曲霉中异源表达及其产物(203/210/211)的分析
  •     6.2.4 PeniB催化产物203/210/211 的分离及结构鉴定
  •     6.2.5 化合物203/210/211 化学喂养ΔpeniA突变株
  •     6.2.6 PeniB酵母微粒体蛋白复合物的体外酶催化功能验证
  •     6.2.7 PeniB催化机理的研究
  •   6.3 小结与讨论
  • 第七章 peni基因簇中Baeyer-Villiger单加氧酶PeniC的功能研究
  •   7.1 前言
  •   7.2 结果与分析
  •     7.2.1 PeniC的生物信息学分析
  •     7.2.2 基因peniC的敲除及其突变株发酵检测
  •     7.2.3 基因peniC在构巢曲霉中异源表达及其催化功能研究
  •     7.2.4 PeniC蛋白在大肠杆菌中的表达
  •     7.2.5 化合物211 化学喂养ΔpeniB及 ΔpeniC突变株
  •     7.2.6 基因peniD/peniE/peniF的敲除及各突变株发酵检测
  •   7.3 小结与讨论
  • 第八章 总结与展望
  •   8.1 本研究工作总结
  •   8.2 主要创新点
  •   8.3 进一步工作展望
  • 参考文献
  • 附录
  • 致谢
  • 在校期间发表文章和参加科研情况
  • 文章来源

    类型: 博士论文

    作者: 曾海春

    导师: 胡昌华

    关键词: 窗烷类天然产物,生物合成,倍半萜环化酶,细胞色素单加氧酶

    来源: 西南大学

    年度: 2019

    分类: 基础科学,农业科技

    专业: 生物学,植物保护

    单位: 西南大学

    分类号: S482;Q78

    总页数: 175

    文件大小: 15988K

    下载量: 251

    相关论文文献

    • [1].麻痹性贝毒生物合成机制的研究进展和蛋白组学的应用[J]. 安徽农业科学 2011(20)
    • [2].一种便携式无活细胞表达的生物合成新技术及其应用[J]. 中国医药生物技术 2018(03)
    • [3].核糖体生物合成与肿瘤的研究进展[J]. 肿瘤防治研究 2020(05)
    • [4].雷帕霉素生物合成及其分子调控的研究进展[J]. 中国抗生素杂志 2019(01)
    • [5].人参皂苷生物合成调控的研究进展[J]. 吉林农业 2014(05)
    • [6].全局调控基因对抗生素生物合成的影响[J]. 浙江农业科学 2012(07)
    • [7].栀子环烯醚萜类物质生物合成相关基因的挖掘与分析[J]. 分子植物育种 2020(12)
    • [8].第5届定向生物合成会议[J]. 食品与生物技术学报 2017(01)
    • [9].光照对植物花色素苷生物合成的调控及机制[J]. 植物生理学报 2017(09)
    • [10].多氧霉素及其生物合成的研究进展[J]. 微生物学通报 2016(01)
    • [11].微生物次级代谢产物生物合成的研究进展[J]. 生物技术通报 2020(11)
    • [12].运动对骨骼肌线粒体生物合成调节因子影响进展研究[J]. 吉林体育学院学报 2013(04)
    • [13].生物合成咖啡酸苯乙酯体系的液相色谱-串联质谱快速分析[J]. 分析化学 2010(11)
    • [14].辣椒素生物合成路径及调控基因研究的最新进展[J]. 分子植物育种 2008(02)
    • [15].选择性抑制胆固醇生物合成药物的研究进展[J]. 中国新药杂志 2008(13)
    • [16].玉米赤霉烯酮生物合成和降解的研究进展[J]. 中国生物工程杂志 2011(02)
    • [17].组合生物合成研究进展[J]. 国外医药(抗生素分册) 2011(01)
    • [18].组合生物合成萜类和聚酮类生物活性物质的研究进展[J]. 药物生物技术 2014(04)
    • [19].妥布霉素生物合成中磷酸盐的调节研究[J]. 中国医药指南 2012(13)
    • [20].人参皂苷生物合成的研究进展[J]. 安徽农业科学 2012(19)
    • [21].镰刀菌单端孢霉烯族毒素的生物合成及分子调控研究进展[J]. 食品科学 2019(05)
    • [22].茅苍术内参基因筛选及其在活性成分生物合成研究中的应用[J]. 植物生理学报 2017(09)
    • [23].辅酶Q的生物合成及其最新进展[J]. 科技视界 2016(10)
    • [24].脂联素通过增强线粒体生物合成和功能减轻高糖/高脂诱导的心肌细胞损伤[J]. 心脏杂志 2013(02)
    • [25].miRNA~*生物合成及其功能研究的新发现[J]. 遗传 2012(04)
    • [26].人参皂苷生物合成的相关酶及其基因的研究进展[J]. 人参研究 2012(01)
    • [27].前体对多拉菌素生物合成的影响[J]. 中国抗生素杂志 2011(11)
    • [28].海洋巨大芽孢杆菌抑制黄曲霉毒素的生物合成[J]. 食品工业科技 2010(08)
    • [29].组合生物合成技术在药物研发中的应用[J]. 药学进展 2009(08)
    • [30].龙脷叶转录组分析及黄酮类生物合成相关基因的挖掘[J]. 广东农业科学 2020(07)

    标签:;  ;  ;  ;  

    真菌窗烷类杀虫活性倍半萜penifulvin A生物合成的研究
    下载Doc文档

    猜你喜欢