Admissible态射和tubular型加权射影线的凝聚层范畴

Admissible态射和tubular型加权射影线的凝聚层范畴

论文摘要

加权射影线由射影直线P1(k)中t个两两不同的数构成的有序数列λ =(λ1,λ2,…,λt)和权序列p=(p1,p2,…,pt)构成,记为X(p,λ).权序列确定一个秩为1的阿贝尔群L(p),称为string群.加权射影线X(p,λ)确定L(p)-分次的齐次坐标代数S(p,λ).加权射影线的凝聚层范畴coh-X(p,λ)是L(p)分次S(p,λ)-有限生成模范畴模去L(p)分次S(p,λ)-有限维模范畴的商范畴.为研究不同的加权射影线的凝聚层范畴之间的关系,文[1]定义了string群之间的admissible态射.利用admissible态射nπ:L(p)→ L(q),可导出范畴等价(coh-X(p,λ))kerπ→coh-X(q,μ).其中(coh-X(p,λ))kerπ是群kerπ导出的等变范畴.本论文研究tubular型的string群之间的admissible态射.第一章回顾了加权射影线的凝聚层范畴的发展历史,介绍了本论文的背景.第二章回顾了相关的基础知识.第三章给出了tubular型的admissible态射的完全分类.第四章刻画了由admissible态射确定的tubular型的加权射影线的凝聚层范畴之间的联系.

论文目录

  • 中文摘要
  • abstract
  • 第一章 综述
  • 第二章 Admissible态射
  •   2.1 加权射影线的凝聚层范畴和齐次坐标代数
  •   2.2 Admissible态射
  •   2.3 群作用和等变范畴
  • 第三章 Tubular型的admissible态射的分类
  • 第四章 Tubular型的加权射影线的凝聚层范畴之间的联系
  • 1))和coh-X(2,2,2,2;λ2)之间的关系'>  4.1 coh-X(2,2,2,2;λ1))和coh-X(2,2,2,2;λ2)之间的关系
  •   4.2 coh-X(4,4,2)和coh-X(2,2,2,2;λ)之间的关系
  •   4.3 coh-X(6,3,2)和coh-X(2,2,2,2;λ)之间的关系
  •   4.4 coh-X(6,3,2)和coh-X(3,3,3)之间的关系
  •   4.5 coh-X(4,4,2)和coh-X(4,4,2)之间的关系
  •   4.6 coh-X(3,3,3)和coh-X(3,3,3)之间的关系
  • 参考文献
  • 致谢
  • 文章来源

    类型: 硕士论文

    作者: 张洪侠

    导师: 林亚南

    关键词: 加权射影线,齐次坐标代数,凝聚层范畴,态射

    来源: 厦门大学

    年度: 2019

    分类: 基础科学

    专业: 数学

    单位: 厦门大学

    分类号: O154.1

    总页数: 36

    文件大小: 1465K

    下载量: 4

    相关论文文献

    • [1].Well-posedness and generalized metric subregularity with respect to an admissible function[J]. Science China(Mathematics) 2019(04)
    • [2].On Meromorphic Solutions of Nonlinear Complex Differential Equations[J]. Communications in Mathematical Research 2018(02)
    • [3].m Components-Admissible Solutions of Systems of Higher-Order Partial Differential Equations on C~n[J]. Acta Mathematicae Applicatae Sinica 2008(02)
    • [4].HOLOMORPHIC HARMONIC ANALYSIS ON COMPLEX REDUCTIVE GROUPS[J]. Acta Mathematica Scientia 2008(03)
    • [5].Rigidity of certain admissible pairs of rational homogeneous spaces of Picard number 1 which are not of the subdiagram type[J]. Science China(Mathematics) 2019(11)
    • [6].Quasi-binomial coefficients stemming from Nakayama algebras[J]. Science China(Mathematics) 2014(07)
    • [7].Fixed point theorems for better admissible multimaps on Abstract convex spaces[J]. Applied Mathematics:A Journal of Chinese Universities(Series B) 2010(01)
    • [8].Microstructure evolution and mechanical properties of Ti-8Nb-2Fe-0.2O alloy with high elastic admissible strain for orthopedic implant applications[J]. Progress in Natural Science:Materials International 2020(01)
    • [9].Strong Differential Subordination and Superordination Properties of Phi-Like Functions[J]. Journal of Mathematical Research with Applications 2016(03)
    • [10].Admissible Solutions of Systems of Complex Partial Difference Equations on C~n[J]. Acta Mathematicae Applicatae Sinica 2015(02)
    • [11].Inverse Coefficient Problems for Nonlinear Parabolic Differential Equations[J]. Acta Mathematica Sinica(English Series) 2008(10)
    • [12].ADMISSIBILITY OF LINEAR ESTIMATORS IN A GROWTH CURVE MODEL SUBJECT TO AN INCOMPLETE ELLIPSOIDAL RESTRICTION[J]. Acta Mathematica Scientia 2008(01)
    • [13].On growth,zeros and poles of meromorphic solutions of linear and nonlinear difference equations[J]. Science China(Mathematics) 2011(10)
    • [14].HOMOGENIZATION FOR NONLINEAR SCHRODINGER EQUATIONS WITH PERIODIC NONLINEARITY AND DISSIPATION IN FRACTIONAL ORDER SPACES[J]. Acta Mathematica Scientia(English Series) 2015(03)
    • [15].Improved tracklet association method for initial orbit determination of space debris[J]. Journal of Beijing Institute of Technology 2016(S2)
    • [16].The Third Initial-boundary Value Problem for a Class of Parabolic Monge-Ampère Equations[J]. Communications in Mathematical Research 2012(01)
    • [17].On the First Hochschild Cohomology of Admissible Algebras[J]. Chinese Annals of Mathematics(Series B) 2015(06)
    • [18].Robust Admissible Analyse of Uncertain Singular Systems via Delta Operator Method[J]. 科技视界 2016(09)
    • [19].Maximal admissible mode decision delay in terminal guidance[J]. Chinese Journal of Aeronautics 2019(08)
    • [20].THIRD-ORDER DIFFERENTIAL SUBORDINATION RESULTS FOR ANALYTIC FUNCTIONS INVOLVING THE GENERALIZED BESSEL FUNCTIONS[J]. Acta Mathematica Scientia 2014(06)
    • [21].General Admissibility for Linear Estimators of Multivariate Random Regression Coefficients and Parameters with Respect to a Restricted Parameter Set[J]. Journal of Shanghai Jiaotong University(Science) 2009(06)
    • [22].General Admissibility for Linear Estimators in a General Multivariate Linear Model under Balanced Loss Function[J]. Acta Mathematica Sinica 2013(09)
    • [23].Shape Optimization in Two-Dimensional Viscous Compressible Fluids[J]. Acta Mathematica Sinica(English Series) 2010(09)
    • [24].INVERSE COEFFICIENT PROBLEMS FOR PARABOLIC HEMIVARIATIONAL INEQUALITIES[J]. Acta Mathematica Scientia 2011(04)
    • [25].Similarity Solutions for Generalized Variable Coefficients Zakharov-Kuznetsov Equation under Some Integrability Conditions[J]. Communications in Theoretical Physics 2010(10)
    • [26].CONTINUOUS FRAME WAVELETS[J]. Acta Mathematica Scientia 2012(02)
    • [27].Optimal Dividend Strategy in Compound Binomial Model with Bounded Dividend Rates[J]. Acta Mathematicae Applicatae Sinica(English Series) 2014(04)
    • [28].On Non-Bi-Lipschitz Homogeneity of Some Hyperspaces[J]. Journal of Mathematical Research with Applications 2014(03)
    • [29].ON FORMABILITY OF LINEAR CONTINUOUS-TIME MULTI-AGENT SYSTEMS[J]. Journal of Systems Science & Complexity 2012(01)
    • [30].Energy Method in Stretch Reducing Process of Steel Tube[J]. Journal of Iron and Steel Research(International) 2008(06)

    标签:;  ;  ;  ;  

    Admissible态射和tubular型加权射影线的凝聚层范畴
    下载Doc文档

    猜你喜欢