电力系统继电保护及故障检测方法的创新饶伟洋

电力系统继电保护及故障检测方法的创新饶伟洋

(广东电网有限责任公司河源供电局广东省河源市517000)

摘要:当前,我国电力系统的继电保护管理水平虽然得到了较大提升,继电保护和故障检测方法也得到了更新换代,但由于受到专业技术、设备保养、线路维护等诸多因素的影响,继电保护故障问题仍较为普遍,因此我们应加强这方面的研究,将常见的继电保护故障检测方法融入于实际的故障查找当中,为推动我国继电保护的发展助力。本文对电力系统继电保护及故障检测方法的创新进行分析。

关键词:电力系统;继电保护;故障检测;方法创新

继电保护与故障检测对电力系统安全、可靠、稳定运行发挥着极其重要的作用。小电流接地系统的空间电磁场探测故障支路与故障点和多分辨分析小波接地选线识别故障支路与故障接地相等故障检测新方法,是实现快速检测和识别小电流接地系统故障支路、故障点及故障接地相提高电网设备管理维护的继电保护和故障检测分析水平的可行方法。随着电力系统向微机化、数字化、自动化和网络化发展和数字化变电站、无人值班变电站及特高压电网的建设运行,继电保护及故障检测也需逐步向控制、测量、保护、智能、网络、数据通信一体化发展。

1电力系统继电保护及故障检测的作用

电力系统继电保护及故障检测能够有效保证电力系统的安全运行,一旦系统内部某个设备或元件出现故障时,系统能够自动发出相关指令,从而有效降低故障对电力系统的实际影响,并能够实现系统内部资源的有效整合,从而促进电力系统的快速恢复运行,从而有效减少系统故障对社会生活产生的不便。电力系统继电保护及故障检测能够实现对电力系统运行情况的监测,及时发现电网运行中的异常情况和故障问题,进而对出现问题的故障区域和问题原因进行分析,采取合理的解决措施对故障进行处理。一旦电力系统内部工作状态不稳定,继电保护和故障检测能够在第一时间自动发出信号,提醒值班人员电力系统出现异常,以便故障问题能够得到第一时间的处理,从而有效降低电力系统故障问题所导致的安全隐患。

2基于小电流接地系统的故障检测方法

2.1空间电磁场探测单相接地故障支路方法

如果电力系统中小电流接地系统存在单相接地问题,此时接地点的前向支路、后向支路等会出现不同的特征,而且周围电场和磁场也会出现变化。技术人员采用小电流接地系统稳态分析,能够针对正常支路和故障支路的5条配电线支路进行故障点探测试验,然后根据探测结果,获得正常支路参数、故障支路参数。故障参数就系统参数等,随后针对该类参数进行稳态分析,获得故障稳态条件下,配电系统支路零序容性电流及零序容性功率的特征。如果非故障零序容性电流超前零序电压为π/2,则零序容性功率为负。如果故障支路故障点前向零序容性电流超前零序电压为π/2,则零序容性功率为负,如果故障支路故障点后向零序容性电流超前零序电压为π/2,则零序容性功率为正。

技术人员进行配电线路的电场和磁场分析,需要不考虑负载和线路间的互感影响,针对周边电磁场进行仿真接地点探测。电场信号和磁场信号分别进入放大器、滤波器和过零比较器等进行探测,并汇总至比相器和示波器,可以得出三相电压和电流三相合成的电场和磁场与零序电压和零序电流分别产生的电场和磁场,能够可替代。技术人员可以利用五次谐波电流电压的电场和磁场进行检测,即利用空间电磁场探测故障支路和故障点就有可靠性和可行性。

2.2识别故障支路和故障接地相的方法

当小电流接地系统出现单相接地故障时,会有一个包含较多故障特征的明显暂态过程。通过建立小电流接地系统数学模型,可仿真获得故障发生时前几个周波的暂态信号波形,由此检测到系统各条支路的负荷电流产生的波形瞬时畸变,再通过对接地故障发生时刻电流的暂态信号进行小波分解,可得到故障支路与健全支路的三相电流能量时谱,进而得到故障后一周波内能量积分的小波能量接地选线选相判据。通过直接从负荷电流提取瞬时特征和分析故障频带特征量,即可在系统正常运行未受到明显影响的情况下,识别判断出故障支路和故障接地相。此外,将小波变换与神经网络、模糊识别和专家系统等人工智能方法结合应用于分散性大,工况复杂的配电网系统故障检测,会有效提高小电流接地选线及故障定位的准确度。

3分析系统的继电保护与故障检测

3.1综合故障分析系统功能

系统能为调度人员提供及时、简要的故障信息、故障准确位置、开关跳闸情况及保护动作行为,以使其快速作出系统恢复决策,还能为继电保护技术人员提供各套保护装置故障过程的详细动作行为、故障电流电压变化情况及各故障分量对保护装置的影响等较大量的专门信息。系统能使就地站保护及故障录波器时钟同步,能为站内自动化监控系统提供必要数据,并通过地站保护及故障录波器进行智能化数据处理,实现不同设备间数据传输的规约转换,以适应不同工作对象需要。能通过双端故障测距计算提高测距准确性;能提供与MIS系统的数据接口和数据交换,使系统的数据上网方式更具有灵活性。系统还具有故障信息集中处理、共享及综合利用功能。

3.2综合故障分析系统的继电保护与检测方法

3.2.1网络化继电保护与故障检测

微机保护装置网络化,为将电力系统继电保护各主要设备的每一点保护装置都进行差动和纵联串联保护,由主站统一协调管理提供了数据通讯、处理、上传等通信支持。可以根据继电保护装置反应的保护安装处的电气量,实时准确检测和判断出发生故障的位置、性质、原因及故障参数,及时向相应的保护装置发出指令,快速准确的切除故障元件,缩小故障范围,提高整个系统运行的安全性、可靠性和稳定性。

3.2.2继电保护与故障检测的自适应控制方法

自适应控制主要是通过检测电力系统的运行方式、故障状态等变化情况实现系统的保护作用。另外,通过自适应控制能根据系统的实时变化情况自动保护性能的相应改变,使得整个系统能实时适应转台变化,从而提高电力系统、继电保护系统的相应性能,例如发电机保护、输电线路距离保护与变压器保护等,由此强化继电保护系统的稳定性与安全性。

3.2.3人工神经网络继电保护与故障检测

这种故障检测方法是以生物神经网络系统为原理,再通过人工再造,然后将其运用到电力系统的继电保护与故障检测中,这种方法表现出自组织、自学习、自适应、以及自识别等特点,可以进行信息分散存储以及并行处理。通过这种方式,利用人工神经网络,实现了对电力系统的故障测距、故障判别等,进而实现了对电力系统的有效保护。

结束语:

电力系统规模不断加大,目前全国将近有两万多个节点,每个节点对应相应变电站或发电厂。这么庞大的系统安全稳定性及运行质量特别重要,继电保护就是保证电力系统安全运行的装置。电力系统容易发生故障,最常见的故障为单相短路故障,其次还有两相短路、三相短路、短路、过电压、过负荷等。继电保护装置和检测系统能够确定故障类型,并自动进行故障切除或给运行人员发出警告,对电力系统中的设备进行有效保护,不至于因某处发生故障而影响其他线路的可靠运行,从而保证了电力系统供电的持续性。

参考文献:

[1]陈金泉.电力系统继电保护故障分析与处理措施探讨[J].中国新技术新产品,2016,(23):79-80.

[2]任洋,滕巍,张笑时.电力系统继电保护及故障检测方法研究[J].中国新技术新产品,2016,(23):61-62.

[3]吕建刚,马宏斌.电力继电保护故障检测与维修分析[J].科技创新与应用,2014(31).

标签:;  ;  ;  

电力系统继电保护及故障检测方法的创新饶伟洋
下载Doc文档

猜你喜欢