导读:本文包含了垂线偏差论文开题报告文献综述、选题提纲参考文献及外文文献翻译,主要关键词:垂线,偏差,重力场,方位角,模型,单点,泰勒。
垂线偏差论文文献综述
黄炎,王庆宾,冯进凯,谭勖立[1](2019)在《基于OpenMP多核并行算法的垂线偏差快速计算》一文中研究指出针对利用超高阶地球重力场模型计算大范围、高分辨率区域垂线偏差效率低的问题,提出基于OpenMP多核并行技术的数组升维和分区计算方法。实验表明,该方法计算垂线偏差的加速比最高达到5.6倍,显着提高了超高阶垂线偏差的计算效率,也为解决重力场数据处理过程中类似的快速计算问题提供了思路。(本文来源于《大地测量与地球动力学》期刊2019年10期)
李江卫,王勇,郭际明,章迪[2](2019)在《高层建筑施工GNSS定位结果垂线偏差影响分析》一文中研究指出利用EGM2008模型计算了全国34个直辖市、省(自治区、特别行政区)会城市所有市辖区的垂线偏差,通过统计分析发现,不同省会之间垂线偏差存在差异,东北、华东、华中、华南等区域省会各市辖区之间垂线偏差差异较小,其他省会尤其是西部部分省会的各市辖区之间垂线偏差差异较大。工程中应根据施工区域垂线偏差的具体数值和高层建筑高度对GNSS定位结果进行相应改正。(本文来源于《地理空间信息》期刊2019年09期)
李伟超,张兴福,陈智伟,崔家武[3](2019)在《利用大地水准面模型计算垂线偏差的方法及精度分析》一文中研究指出根据大地水准面与垂线偏差的关系,设计合理的计算方案,给出利用大地水准面模型计算垂线偏差的简化公式,并通过模拟计算探讨大地水准面相对精度、取点间距和已知点选取及个数对计算结果的影响。利用GEOID12B模型分别计算GSVS2011、GSVS2014项目中各测站点和美国西部区域(40°~45°N,100°~105°W,分辨率为1′)的垂线偏差,并与GSVS项目垂线偏差实测值和DEFLEC12B模型值进行比较。结果表明,垂线偏差南北分量和东西分量的计算精度均优于±0.5″,说明利用相对精度为cm甚至亚cm级的大地水准面模型可获取较高精度的垂线偏差。(本文来源于《大地测量与地球动力学》期刊2019年08期)
崔家武,张兴福,周波阳,陈智伟[4](2019)在《利用高精度GNSS水准及垂线偏差数据分析重力场模型的误差特性》一文中研究指出高精度的GNSS水准及垂线偏差等数据对全面评定重力场模型精度具有重要意义.本文利用美国GSVS2011、GSVS2014项目高精度的GNSS水准及垂线偏差等数据,通过谱组合方法分析了DIR-R5、GOCO05S和TIM-R5等具有代表性的重力场模型的可靠阶次,并分别与EIGEN-6C4形成组合模型DIR-R5-Com、GOCO05S-Com、TIM-R5-Com,在此基础上,进而分析了EGM2008、EIGEN-6C4与3个组合模型的误差特性.实验结果表明:(1)DIR-R5、GOCO05S和TIM-R5模型截断至220阶以前是可靠的;(2)整体上,重力场模型沿经圈走向(GSVS2011)的高程异常和垂线偏差精度要优于沿纬圈走向(GSVS2014)的精度;(3)重力场模型垂线偏差卯酉圈分量的精度要优于子午圈分量的精度;(4)模型高程异常在经圈上的相对精度整体上要优于在纬圈上的精度.(本文来源于《地球物理学进展》期刊2019年05期)
翟振和,管斌,冯来平,明锋[5](2018)在《近海海域垂线偏差的测量试验及精度分析》一文中研究指出为深入研究垂线偏差在海域的精度水平,在我国渤海近海区域利用数字天顶仪及精密单点定位技术测量获得了若干高精度垂线偏差测量值,利用测量值对EGM2008模型、Jason-1卫星数据、DTU10海面高模型及点质量模型计算得到的垂线偏差进行了比对分析。以测量结果为基准,比较结果表明,EGM2008模型的计算结果相对较好,Jason-1卫星数据和点质量模型次之,DTU10海面高计算结果较差。以长岛观测点为代表,EGM2008模型、Jason-1卫星数据、点质量模型计算的垂线偏差与数字天顶仪测量获得的垂线偏差的差异(子午和卯酉两个方向)在1. 5″以内。(本文来源于《海洋测绘》期刊2018年05期)
牟志华,聂凯,栾瑞鹏[6](2018)在《光测站点垂线偏差对飞行器定位的影响分析》一文中研究指出针对外测数据处理中对站点垂线偏差测量和使用的忽视,依据坐标系旋转和矩阵变换理论,推导站点垂线偏差对方位角和俯仰角的影响公式,进而推导对多站最小二乘交会定位结果的影响。仿真结果表明,某些站点垂线偏差对方位角的影响最大值超过设备测量精度值的2倍,对俯仰角的影响最大值超过设备测量精度值的50%,对飞行器定位的影响主要表现在X方向和Y方向上。为提高数据处理精度,有必要对站点垂线偏差进行修正。(本文来源于《弹箭与制导学报》期刊2018年03期)
王健松[7](2018)在《重力垂线偏差测量及估算方法研究》一文中研究指出重力垂线偏差信息在国防科技、资源勘探以及大地测量等领域有着重要应用价值。高精度的垂线偏差测量是大地测量领域的一个难题。本文从基于组合导航原理的垂线偏差测量方法、基于零速修正的垂线偏差测量方法和基于标量重力测量值的垂线偏差估算方法叁个方面对垂线偏差的测量和估算展开了深入研究。本文主要研究工作成果包括:(1)研究建立了GPS/INS组合系统的姿态误差与垂线偏差的关系模型,基于该关系模型研究了垂线偏差的测量方法。将垂线偏差分解为中低频和高频两部分,由全球重力场模型EGM2008计算低频部分,对高频部分采用改进的Gauss-Markov模型进行估计建模。最终对垂线偏差高频扰动部分采用RTS平滑算法实现估计,从而将高频部分和EGM2008获得的低频部分相加即为相应的垂线偏差。(2)研究了基于零速修正的垂线偏差测量方法。通过在速度、位置匹配下对零速修正模型的仿真研究,分析了零速修正模型存在的对姿态不敏感问题,并通过优化卡尔曼滤波器的量测方程对其进行了改进,试验结果表明,改进的量测方程提高了姿态输出的精度,具有较好的测量效果,其精度在2?以内。(3)研究了基于标量重力异常数据估算垂线偏差的方法。分析了重力数据向下延拓不适定问题的主要原因,研究基于正则化法的向下延拓方法,引入正则化参数,改善向下延拓的不适定问题,通过EGM2008计算相应区域的重力异常和垂线偏差数据,以此作为基准,采用正则化算法对数据进行向下延拓计算,与基准分析比较,验证此方法的可行性与有效性。(4)基于本文所研究的垂线偏差计算方法,利用C#和Matlab混合编程的方式设计了求解垂线偏差的软件。该软件平台能够方便、快捷的利用叁种方法对垂线偏差进行计算。软件应用试验表明,该软件能够满足应用性和实效性。最后利用7组海洋实测数据对垂线偏差的估算方法进行了验证。(本文来源于《东南大学》期刊2018-06-08)
朱永超,万晓云,于锦海[8](2017)在《引力和垂线偏差的非奇异公式》一文中研究指出基于珚(P_(nm)(cosθ))/(sinθ)m(>0)的非奇异递推公式,给出了基于球坐标的引力矢量和垂线偏差非奇异计算公式;针对极点λ可任意取值引起的地方指北坐标系方向的不确定性问题,证明了引力矢量在转换到地心直角坐标系后不随λ的变化而变化,即与λ的取值无关。最终的数值计算结果表明,直角坐标系下的非奇异计算公式与本文提出的球坐标下的非奇异计算公式所得计算结果绝对值差异小于10~(-16) m/s~2,证明了该非奇异公式的正确性。最后总结了所有引力位球函数一阶导、二阶导非奇异性计算的一般思路。(本文来源于《武汉大学学报(信息科学版)》期刊2017年12期)
张鑫,彭友志,刘正华,何浩鹏,刘海波[9](2017)在《基于GNSS与垂线偏差的真北方向测量方法》一文中研究指出真北方位角的传统获取方法为天文测量,本文介绍了通过GNSS测量,结合垂线偏差数据,得到真北方位角的方法,并在武汉比长基线场进行了多次GNSS观测试验,通过GNSS水准法和EGM2008地球重力场模型分别得到该处的垂线偏差,计算得到观测边的真北方位角,并对此方法进行了不确定度分析,所得的真北方位角合成标准不确定度在1″量级,与二等天文测量结果精度相当。(本文来源于《计量技术》期刊2017年11期)
曲政豪,邢志斌,戴鑫[10](2016)在《基于垂线偏差的局域似大地水准面精化方法》一文中研究指出选取Belikov列推法来解算各个超高阶重力场模型参数,并保留至泰勒级数一阶项来计算模型高程异常,这样既能保证计算速度也能达到足够的精度,能够满足大区域高分辨率高程异常建模的需求。最后通过比较分别基于垂线偏差和重力异常求得的高程异常,得出基于垂线偏差求得高程异常精度高。(本文来源于《国家安全地球物理丛书(十二)——地球物理与信息感知》期刊2016-08-15)
垂线偏差论文开题报告
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
利用EGM2008模型计算了全国34个直辖市、省(自治区、特别行政区)会城市所有市辖区的垂线偏差,通过统计分析发现,不同省会之间垂线偏差存在差异,东北、华东、华中、华南等区域省会各市辖区之间垂线偏差差异较小,其他省会尤其是西部部分省会的各市辖区之间垂线偏差差异较大。工程中应根据施工区域垂线偏差的具体数值和高层建筑高度对GNSS定位结果进行相应改正。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
垂线偏差论文参考文献
[1].黄炎,王庆宾,冯进凯,谭勖立.基于OpenMP多核并行算法的垂线偏差快速计算[J].大地测量与地球动力学.2019
[2].李江卫,王勇,郭际明,章迪.高层建筑施工GNSS定位结果垂线偏差影响分析[J].地理空间信息.2019
[3].李伟超,张兴福,陈智伟,崔家武.利用大地水准面模型计算垂线偏差的方法及精度分析[J].大地测量与地球动力学.2019
[4].崔家武,张兴福,周波阳,陈智伟.利用高精度GNSS水准及垂线偏差数据分析重力场模型的误差特性[J].地球物理学进展.2019
[5].翟振和,管斌,冯来平,明锋.近海海域垂线偏差的测量试验及精度分析[J].海洋测绘.2018
[6].牟志华,聂凯,栾瑞鹏.光测站点垂线偏差对飞行器定位的影响分析[J].弹箭与制导学报.2018
[7].王健松.重力垂线偏差测量及估算方法研究[D].东南大学.2018
[8].朱永超,万晓云,于锦海.引力和垂线偏差的非奇异公式[J].武汉大学学报(信息科学版).2017
[9].张鑫,彭友志,刘正华,何浩鹏,刘海波.基于GNSS与垂线偏差的真北方向测量方法[J].计量技术.2017
[10].曲政豪,邢志斌,戴鑫.基于垂线偏差的局域似大地水准面精化方法[C].国家安全地球物理丛书(十二)——地球物理与信息感知.2016