美式期权定价的时间分数阶Black-Scholes互补模型

美式期权定价的时间分数阶Black-Scholes互补模型

论文摘要

Black-Scholes(BS)期权定价模型是期权定价的重要方法,因其将期权的定价、原生标的资产价格的随机波动及无风险利率等要素巧妙的联系在一起而颇受国内外学者的关注.然而众多学者通过对股票市场的观察和研究发现,由于资本市场的本质特征和状态都是随机波动的,与传统的BS期权定价模型的假设并不完全吻合,使得该模型定价与实际市场价格有着较大的差别.很多学者开始考虑对原始布朗运动的偏微分方程进行修正,为了使修正后的布朗运动能够更多的反映自相关性、长期记忆性和增量相关性等众多性质.如何构建更适用于实际金融市场及相对易于求解的期权定价模型一直以来都是受关注的问题.随着微分方程的分形结构在金融领域内被发现,越来越多的学者开始关注金融领域中的分数阶偏微分方程模型.本文基于时间分数阶BS方程相关理论研究了美式期权定价问题的互补模型.首先根据BS方程假设中的无风险投资组合的含义及美式期权的性质,给出了时间分数阶BS方程互补模型;随后运用Caputo分数阶导数的L1插值逼近对互补问题进行了网格离散化,分析了差分格式的截断误差,之后将离散化的期权定价互补问题转化成优化问题求解;最后利用MATLAB编程进行了数值实验,给出了数值结果及结论.本文的研究内容主要包括以下两个方面:1.考虑了美式期权定价问题的时间分数阶BS互补模型及解法.通过将BS方程转化为互补问题,改善了某些美式期权定价模型的解对自由边界的依赖;2.利用一年期美式看跌期权、中国移动和汇丰控股看跌期权的相关数据进行了初步的数值实验,分析了本文模型的不同分数阶与到期日期权价格变动趋势.数值结果表明由本文模型获得的期权定价结果优于传统的BS方程模型,并且部分结果优于由二叉树方法获得的结果.本文第1章简要介绍了期权定价问题的研究现状;第2章主要介绍了期权的基本概念、时间分数阶BS期权定价方程;第3章介绍了互补问题的相关理论及解法;第4章介绍了美式期权自由边界问题,给出了美式期权定价问题的时间分数阶BS互补模型、离散化形式和求解方法,并给出了利用MATLAB编程计算得到的数值结果.最后是总结和后续研究方向.

论文目录

  • 摘要
  • Abstract
  • 1 绪论
  •   1.1 研究背景及意义
  •   1.2 国内外研究现状
  •     1.2.1 国外研究现状
  •     1.2.2 国内研究现状
  •   1.3 论文主要研究内容及结构安排
  • 2 期权定价预备知识
  •   2.1 期权概述
  •     2.1.1 期权的概念
  •     2.1.2 期权的分类
  •     2.1.3 期权价格的构成
  •   2.2 期权定价的BS模型
  •     2.2.1 随机游动与布朗运动
  •     2.2.2 BS方程的推导
  •   2.3 时间分数阶期权定价的BS模型
  • 3 互补问题
  •   3.1 互补问题简介
  •   3.2 互补问题的类型
  •   3.3 互补问题的求解算法
  •     3.3.1 投影法
  •     3.3.2 内点法
  •     3.3.3 光滑牛顿法
  •     3.3.4 非光滑牛顿法
  • 4 美式期权定价的时间分数阶BS互补模型
  •   4.1 美式期权自由边界问题
  •   4.2 美式期权定价的时间分数阶BS互补模型
  •   4.3 差分格式的误差分析
  •   4.4 离散化互补模型的解法
  •   4.5 数值实验
  • 结论
  • 参考文献
  • 攻读硕士学位期间发表学术论文情况
  • 致谢
  • 文章来源

    类型: 硕士论文

    作者: 曾虎生

    导师: 杨莉

    关键词: 美式期权定价,时间分数阶方程,分数阶导数,互补模型,最优化

    来源: 大连理工大学

    年度: 2019

    分类: 基础科学,经济与管理科学

    专业: 数学,宏观经济管理与可持续发展,金融,证券,投资,投资

    单位: 大连理工大学

    分类号: F224;F830.9

    DOI: 10.26991/d.cnki.gdllu.2019.000238

    总页数: 54

    文件大小: 1834K

    下载量: 67

    相关论文文献

    • [1].异结构分数阶混沌系统的柔性变结构同步控制[J]. 扬州大学学报(自然科学版) 2019(04)
    • [2].分数阶复合控制在光电稳定平台中的应用[J]. 电光与控制 2020(01)
    • [3].直线一级倒立摆分数阶控制器设计及仿真[J]. 控制工程 2020(01)
    • [4].基于状态空间平均法的分数阶逆变器建模与分析[J]. 电气应用 2020(01)
    • [5].变指数基尔霍夫型分数阶方程解的存在性[J]. 山东大学学报(理学版) 2020(06)
    • [6].用改进的分数阶最速下降法训练分数阶全局最优反向传播机(英文)[J]. Frontiers of Information Technology & Electronic Engineering 2020(06)
    • [7].基于粒子群优化算法的等比例分数阶系统建模[J]. 自动化与仪表 2020(06)
    • [8].基于分数阶字典的间歇采样转发干扰自适应抑制算法[J]. 系统工程与电子技术 2020(07)
    • [9].基于ESPM的DCM模式下的PFC-BOOST DC/DC变换器分析[J]. 电气应用 2020(08)
    • [10].具不同分数阶扩散趋化模型的衰减估计[J]. 数学年刊A辑(中文版) 2020(02)
    • [11].分数阶混沌系统的同步研究及电路实现[J]. 西北师范大学学报(自然科学版) 2019(06)
    • [12].基于状态观测器的分数阶混沌系统的同步[J]. 电子设计工程 2019(22)
    • [13].分数阶混沌系统的间歇控制同步[J]. 重庆工商大学学报(自然科学版) 2018(04)
    • [14].一类分数阶混沌系统的自适应滑模同步[J]. 扬州大学学报(自然科学版) 2016(03)
    • [15].一类分数阶混沌系统的投影同步[J]. 河南科学 2016(11)
    • [16].标量控制下的分数阶Lü系统的参数辨识和自适应同步[J]. 河南理工大学学报(自然科学版) 2017(01)
    • [17].分数阶电路阶跃响应特性研究[J]. 电子测试 2016(24)
    • [18].分数阶同步发电机系统的混沌同步[J]. 河南科学 2017(03)
    • [19].一类不确定分数阶混沌系统同步的自适应滑模控制方法[J]. 动力学与控制学报 2017(02)
    • [20].分数阶Klein-Gordon-Schr?dinger方程弱解的存在性[J]. 佛山科学技术学院学报(自然科学版) 2017(03)
    • [21].非线性分数阶动力系统的控制研究[J]. 教育现代化 2017(22)
    • [22].基于模糊神经网络的分数阶混沌系统的同步研究[J]. 湖南工程学院学报(自然科学版) 2017(03)
    • [23].分数阶参数不确定混沌系统的自适应同步[J]. 河北师范大学学报(自然科学版) 2016(02)
    • [24].带分数阶自相容源的分数阶超Broer-Kaup-Kupershmidt族[J]. 数学进展 2016(03)
    • [25].一类分数阶混沌系统的滑模控制[J]. 机械制造与自动化 2016(03)
    • [26].分数阶超Broer-Kaup-Kupershmidt族及其非线性可积耦合(英文)[J]. 工程数学学报 2016(04)
    • [27].基于自适应模糊控制的分数阶混沌系统同步[J]. 物理学报 2016(17)
    • [28].一类分数阶复杂网络混沌系统的投影同步[J]. 动力学与控制学报 2016(04)
    • [29].基于分数阶控制器的分数阶混沌系统同步[J]. 兰州理工大学学报 2016(04)
    • [30].滑模控制的时滞分数阶金融系统混沌同步[J]. 深圳大学学报(理工版) 2014(06)

    标签:;  ;  ;  ;  ;  

    美式期权定价的时间分数阶Black-Scholes互补模型
    下载Doc文档

    猜你喜欢