一类图构形和二维非中心构形的2-adic Orlik Solomon代数

一类图构形和二维非中心构形的2-adic Orlik Solomon代数

论文摘要

超平面构形的组合与拓扑不变量是超平面构形理论研究的重要课题之一。2001 年,M.Falk[2]给出了k-adic Orlik Solomon代数的概念和部分研究结果。因为k=1时,它就是Orlik Solomon代数,并指出它也是超平面构形的一系列重要组合与拓扑不变量。同时,M.Falk提出一个关于这一不变量的公开问题:PROBLEM 4.1.Calculate the dimension of Akp in terms of the underlying matroid G.M.Falk指出:对于k=2,还没有得到解决。本文对超平面构形的2-adic Orlik Solomon代数进行了研究,得到了与n-秩轮图相伴的超平面构形的2-adic Orlik Solomon代数第四项,以及该图构形的2-adic Orlik Solomon代数前四项的维数计算公式:dimOS21=2’{nt),t=0,1,2,3,4,并发现该类图构形不是二次的。同时还得到了两类直线构形的2-adic Orlik Solomon代数第四项的维数公式,就n-秩轮图构形和两类直线构形的拟阵,部分地回答了 M.Falk的问题。同时,我们对于n-秩轮图构形的2-adic Orlik Solomon代数的维数有一个猜测:dimOS2t=2t(nt),t=0,1,2,…,n;dimOS2t=0,t=n+1,n+2,…,2n。

论文目录

  • 摘要
  • abstract
  • 第一章 绪论
  •   1.1 研究背景
  •   1.2 本文主要内容
  • 第二章 预备知识
  •   2.1 超平面构形的基本概念
  •   2.2 k-adic Orlik-Solomon代数的基本概念
  • 第三章 n-秩轮图的2-adic Orlik Solomon代数
  •   3.1 n-秩轮图
  •   3.2 n-秩轮图的2-adic Orlik Solomon代数
  • 第四章 二维非中心构形的第四项2-adic Orlik Solomon代数
  •   4.1 二维非中心构形
  •   4.2 任意两个重数大于2的交点都不过同一条直线的构形
  •   4.3 重数大于2的n个交点在一条直线上的构形
  • 第五章 聚合物拓扑图的2-adic Orlik Solomon代数第四项的维数
  • nH2n(n=6,7)和CnH2n-4(n=5-10)的拓扑结构的dim OS24'>  5.1 两类聚合物CnH2n(n=6,7)和CnH2n-4(n=5-10)的拓扑结构的dim OS24
  • nH2n+2(n=4-7)的拓扑结构的dim OS24'>  5.2 聚合物CnH2n+2(n=4-7)的拓扑结构的dim OS24
  • 参考文献
  • 致谢
  • 攻读学位期间发表的学术论文目录
  • 作者与导师简介
  • 附件
  • 文章来源

    类型: 硕士论文

    作者: 陈文娟

    导师: 姜广峰

    关键词: 超平面构形,代数,秩轮图,直线构形

    来源: 北京化工大学

    年度: 2019

    分类: 基础科学

    专业: 数学

    单位: 北京化工大学

    基金: 自然科学基金项目

    分类号: O157.5

    DOI: 10.26939/d.cnki.gbhgu.2019.000423

    总页数: 49

    文件大小: 1283K

    下载量: 5

    相关论文文献

    • [1].确定广义Reed-Solomon码的深洞树及其应用[J]. 中国科学:数学 2017(11)
    • [2].On Reed-Solomon Codes[J]. Chinese Annals of Mathematics(Series B) 2011(01)
    • [3].标准Reed-Solomon码的错误距离[J]. 四川大学学报(自然科学版) 2017(05)
    • [4].On error distance of Reed-Solomon codes[J]. Science in China(Series A:Mathematics) 2008(11)
    • [5].On deep holes of standard Reed-Solomon codes[J]. Science China(Mathematics) 2012(12)
    • [6].An Androgynous Interpretation of Pilate in Song of Solomon[J]. 海外英语 2011(10)
    • [7].量子Generalized Reed-Solomon码[J]. 物理学报 2008(01)
    • [8].Analysis of Song of Solomon from Ecocritical Perspective[J]. 海外英语 2014(03)
    • [9].Different Attitudes Towards Traditional Culture in Song of Solomon[J]. 海外英语 2015(09)
    • [10].The Imprisoned Female in Song of Solomon[J]. 科技信息(学术研究) 2008(01)
    • [11].关于本原射影Reed-Solomon码的深洞[J]. 中国科学:数学 2018(08)
    • [12].The figures of speech in Song of Solomon[J]. 神州 2014(17)
    • [13].关于Reed-Solomon码的深洞的注记[J]. 四川大学学报(自然科学版) 2012(04)
    • [14].Optimal choice of Reed-Solomon codes to protect against queuing losses in wireless networks[J]. The Journal of China Universities of Posts and Telecommunications 2009(03)
    • [15].Analysis of the Existent Dilemma of African American in Song of Solomon[J]. 读与写(教育教学刊) 2014(11)
    • [16].Song of Solomon——A Journey of Milkman Dead[J]. 学周刊 2014(36)
    • [17].A Low Power Error Detection in the Syndrome Calculator Block for Reed-Solomon Codes: RS(204,188)[J]. Tsinghua Science and Technology 2009(04)
    • [18].关于n-秩轮图2-adic Orlik- Solomon代数的研究[J]. 北京化工大学学报(自然科学版) 2019(05)
    • [19].关于标准Reed-Solomon码的深洞猜想的注记[J]. 四川大学学报(自然科学版) 2016(05)
    • [20].广义Reed-Solomon码的深洞[J]. 中国科学:数学 2013(07)
    • [21].有限域上Reed-Solomon码的一个注记(英文)[J]. 四川师范大学学报(自然科学版) 2010(04)
    • [22].广义Reed-Solomon码的子空间子码[J]. 苏州大学学报(自然科学版) 2009(04)
    • [23].关于标准Reed-Solomon码的错误距离的注记[J]. 西南大学学报(自然科学版) 2017(03)
    • [24].《为奴十二年》:激活经典,“高大上”口语来袭[J]. 新东方英语(中学生) 2016(02)
    • [25].Reed-Solomon编解码原理与FPGA实现[J]. 航空电子技术 2009(02)
    • [26].中学生学业拖延的心理分析及对策思考[J]. 校园心理 2013(05)
    • [27].2008-2017年国内关于“学业拖延”研究述评[J]. 校园心理 2018(04)
    • [28].关于标准Reed-Solomon码的平凡码字的注记[J]. 四川大学学报(自然科学版) 2014(01)
    • [29].An Interpretation of Song of Solomon from the Perspective of Spiritual Ecology[J]. 海外英语 2017(15)
    • [30].语言外观足以说明其美观和想象力[J]. 中国书法 2008(07)

    标签:;  ;  ;  ;  

    一类图构形和二维非中心构形的2-adic Orlik Solomon代数
    下载Doc文档

    猜你喜欢