高瑞利数论文_张卢腾,马如冰,周瑜琨,张亚培,田文喜

导读:本文包含了高瑞利数论文开题报告文献综述、选题提纲参考文献及外文文献翻译,主要关键词:自然,数值,事故,层流,湍流,时间,多孔。

高瑞利数论文文献综述

张卢腾,马如冰,周瑜琨,张亚培,田文喜[1](2016)在《高瑞利数下熔融池换热特性试验研究》一文中研究指出基于大型熔融池换热特性试验装置COPRA,开展了严重事故压力容器下封头内堆芯熔融物换热特性的试验研究。试验段是1/4圆二维切片结构,内半径2.2m,与国内某自主设计叁代核电堆型下封头呈1∶1比例,试验采用非共晶摩尔比例20%NaNO_3-80%KNO_3混合物作为熔融物模拟物。熔融池瑞利数可达到1016量级,与反应堆真实情况下的量级一致。试验研究了不同熔融物注入位置、熔融池高度、加热功率和注入次数等对熔融池温度场和热流密度分布的影响。结果表明,在同等瑞利数量级下,COPRA试验得到的熔融池向下封头壁面传热的Nu较国际上其他试验得到的结果低。(本文来源于《原子能科学技术》期刊2016年05期)

杨君[2](2016)在《具有表面辐射的部分填充多孔介质的复合腔体内高瑞利数自然对流传热研究》一文中研究指出自然对流传热现象广泛存在于自然界和实际工程中,其中多孔介质与流体区域组成的复合封闭腔体内自然对流传热应用到更多领域:在建筑环境和建筑节能领域,进行室内舒适度评估时,具有多孔性质的外围护结构的建筑室内的温度分布和气流形态是两个重要指标:另外,建筑墙体的厚度也会影响到室内热湿环境,选择最佳墙体厚度就是一种有效的节能措施:工业生产过程,涉及到工业烘干,催化生产,核工程和农业谷物存储等相关领域。鉴于多孔介质与流体区域组成的自然对流传热机理有如此广泛的实际应用价值,无论是从科学研究还是工程应用来看,对其的探究有重要的意义。实际工程应用中,涉及到的空间多数为大尺度区域,因此流体的自然对流流动形态为高瑞利数流动。本文把具有外围护结构的建筑室看成填充多孔介质封闭腔体,采用多孔介质和空气自由流动的双区域物理模型,基于纯流体和多孔介质流动传热理论,建立了考虑壁面热辐射的流体区域和多孔介质区域的非稳态动量、能量方程,并对所建立的模型进行验证。采用有限元的方法对部分填充多孔介质封闭腔体内具有壁面热辐射的高Rayleigh数自然对流传热过程进行数值模拟分析,研究了Ra(高Rayleigh数和低Rayleigh数)对自然对流和传热的影响,尤其是高瑞利数的影响。其次,分析了各种表面发射率εi条件下的腔体近壁面边界层和温度场、流场的分布,讨论了表面发射率对自然对流和传热的影响。对不同厚度的多孔介质条件下复合腔体内部的流动和传热规律进行了数值模拟,分析多孔介质厚度对腔体内的自然对流和传热的影响。然后,对绝热上壁面和非绝热上壁面对复合腔体内部自然对流传热进行了模拟研究,分析了两种途径下复合腔体内部的温度场和流场。最后,研究了当夏季、冬季室外环境相差较大时,复合腔体内部空气的流动规律和温度分布,讨论了冬季取暖、夏季制冷时计算负荷依据的差异。分析数值模拟结果发现,高瑞利数(Ra=108、109、1010)流体同低瑞利数(Ra=104、105、106)一样,随着Ra的增大,自然对流传热作用增强,将Ra=106与Ra=1010比较发现,温度场和流场的分布差距较大,高瑞利数的腔体内温度分布均匀,流线分布更有规则,对流和传热作用也较显着。边界层明显变薄,多孔介质区域和流体区域交界面处的平均对流努塞尔数很好的佐证了这一点。壁面热辐射的存在减弱了自然对流作用,使近壁面边界层变厚,即使发射率很小,但表面发射率仍可明显改变温度场的分布。多孔介质区域与流体区域交界面处的平均对流努塞尔数随发射率增大而降低,平均辐射努塞尔数和总努塞尔数则随着发射率的增加而变大,且增长速率大于减小的速率。当多孔介质墙体厚度d≤0.25m时,Nuc随着厚度d的增加而不断变大,之后平均自然对流努塞尔数将不再跟着厚度的增加而变化。这意味着当多孔介质厚度达到一定值后,继续增加其厚度,传热量将不再减小。当复合腔体上壁面为非绝热时,涡核心区在腔体下部,上部流线分布不均匀,近壁面边界层变薄,腔体温度升高,但趋于不均匀分布。冬季与夏季因室外环境温度差异大,造成建筑室内环境的明显改变。冬季与夏季两侧壁面的高低温温度分布正好相反,因此腔体内流场的分布水平对称。相比于夏季,冬季的涡核心区位于流体区域下部,热量传递能力高于夏季,但冬季各处温差较大。两季节的多孔介质区域和流体区域之间都同样存在较大温度差。在实际运用中,壁面的热辐射对封闭腔体内部的自然对流、热质交换过程的影响是客观存在的,而且对于像谷物储存、建筑环境等工程应用的复合腔体中热传递问题大多是高Rayleigh数自然对流、传热传质过程,而国内外学者对此问题研究的较少。因此,对具有表面辐射的部分填充多孔介质的复合腔体内高瑞利数自然对流传热问题的研究还需不断探究,以便为实际工程应用提供理论基础。(本文来源于《山东建筑大学》期刊2016-04-01)

张卢腾,周瑜琨,张亚培,田文喜,秋穗正[3](2015)在《基于熔盐工质的高瑞利数熔融池换热特性试验研究》一文中研究指出反应堆发生严重事故时,堆芯可能发生熔化,熔融物迁移至压力容器下封头内形成熔融池结构。熔融池内的自然对流决定了熔融池向下封头壁面的传热特性,是熔融物堆内持留的关键参数。本文介绍了压力容器下封头内堆芯熔融物换热特性试验COPRA。试验段是1/4圆二维切片结构,内半径2.2 m,与国内某自主设计叁代核电堆型下封头是1:1比例。试验采用非共晶摩尔比例20%NaNO_3-80%KNO_3混合物作为熔融物模拟物。熔融池瑞利数可以达到10~(16)的量级,与反应堆真实情况下的量级一致。试验研究了不同熔融物注入位置、熔融池高度、加热功率和注入次数等对熔融池温度场和热流密度分布的影响,并拟合得到了相应关系式。在同等瑞利数量级下,COPRA试验得到的熔融池向下封头壁面传热的Nu数比国际上其它试验得到的结果要低。(本文来源于《“从设计上实际消除核电厂大量放射性物质释放”研讨会论文集》期刊2015-06-25)

赵健,刘扬,董航,魏立新[4](2014)在《高瑞利数条件下竖排管束对原油的换热特性研究》一文中研究指出采用标准k-ε湍流模型、基于有限体积法,对Ra数1.12×106-1.02×108,Pr数101-127范围内竖排等温管束对原油的自然对流换热特性进行了数值研究。结果表明,随相邻加热管中心距增加,管束整体依次经历了换热恶化、强化、稳定和衰退的不同阶段。底部加热管自然对流诱发的流体流动增大了上层管周围流体的速度,对上层管换热具有强化作用,但同时也改变了上层管周围流体的温度分布,导致上层管换热恶化和Nu数随时间产生波动。此外,存在换热强化和最高换热强度的临界中心距都随Ra数增大而减小,换热强化作用随Pr数增大而减弱,增加上层管数在一定程度上可提高管束的平均换热强度。(本文来源于《热能动力工程》期刊2014年06期)

阳祥,陶文铨[5](2014)在《高瑞利数下封闭腔内自然对流的数值模拟》一文中研究指出为了推广应用高瑞利数下的自然对流换热技术,有必要对自然对流流动与换热特性进行深入研究。采用不引入人工扰动的直接数值模拟方法,对发生在高宽比为4的封闭腔内的自然对流流动与换热进行了研究,分析了平均温度、平均主流速度、涡量和局部努塞尔数的分布特性。研究结果表明:从静止等温流体初始条件出发,不引入任何人工扰动自然对流可以顺利发展到湍流,节约了计算资源;即便瑞利数等于1010,自然对流的平均温度、平均主流速度、涡量和局部努赛尔数分布都具有边界层型流动和换热的特征;在普朗特数为0.71~500的范围,当封闭腔内自然对流换热出现湍流换热特征时,局部瑞利数处于107~108量级。(本文来源于《西安交通大学学报》期刊2014年05期)

孙亮,孙一峰,马东军,孙德军[6](2007)在《高瑞利数下水平自然热对流的幂律关系》一文中研究指出采用数值模拟方法,研究了高度和宽度比为1∶10的狭长矩形腔内的水平自然热对流.根据对瑞利数(Rayleigh数)Ra在104<Ra<1011内情形的计算结果,将流动分为叁个不同的区间:线性区、连续过渡区、1/5次幂律区.虽然流量和努塞尔数(Nusselt数)Nu随瑞利数的变化都包括了叁个参数演化区间,但从一个区间到另外一个参数区间的转变时并不是同步的,其中努塞尔数的转变总是超前流量的转变.对比前人的研究发现,流量1/3次幂律的结果是由于瑞利数不够高所致.此外,模拟结果也表明Siggers等的理论分析过高估计了热通量强度,实际的温度边界层内努塞尔数和瑞利数为1/5次幂律关系.(本文来源于《物理学报》期刊2007年11期)

李光正,马洪林[7](2004)在《封闭腔内高瑞利数层流自然对流数值模拟》一文中研究指出采用两种时间推进数值方法,对封闭腔内层流自然对流换热进行了各种瑞利数(Ra)条件下的模拟研究,总结了流态转捩时所表现的数值模拟方面的某些现象规律.当瑞利数不大于106时,两种数值方法计算结果一致,计算精度高.当瑞利数大于106后,数值收敛及计算结果与网格数,网格疏密程度,时间步长,松弛因子等因素密切相关,而与所选择的两种数值方法无关.给出了封闭方腔自然对流流态转捩临界瑞利数.(本文来源于《华中科技大学学报(城市科学版)》期刊2004年03期)

马洪林[8](2004)在《封闭腔内高瑞利数(Ra)层流与湍流自然对流数值模拟》一文中研究指出封闭腔内自然对流换热问题在工程实际问题中有着广泛的应用背景,例如建筑物隔热、核反应堆安全设计、微电子设备的冷却等,因而日益得到广泛的注意。众多国内外学者对这个问题进行了大量的实验研究和数值分析。本文将时间相关法的ADI方法推广到封闭腔内自然对流非等距网格剖分的计算中,通过对不同瑞利数()的数值模拟及与各种数值方法计算结果的对比分析,表明该方法推导简单,计算稳定,计算精度较高。本文重点对高瑞利数()的情况下进行了数值模拟,并根据计算结果,给出了封闭腔内的等流线图和等温线图,并且也给出了非等距网格下网格疏密程度以及网格数等与平均努赛尔数的关系。并与前人所给出的平均努赛尔数拟合曲线进行了比较。在高瑞利数下,计算的收敛性和计算结果的精度与网格数、网格疏密程度、松弛因子以及时间步长密切相关。由于计算机内存和计算机本身的精度的限制,在的情况下,随着网格数的增大,计算结果反而偏离真值。为了获得更高瑞利数情况下的封闭腔内的流动情况,必须加入湍流模型。本文采用湍流模型,用湍流粘性系数法对一个简单的二维湍流边界层进行了数值模拟。给出了二维渠道流速度和湍流动能的分布曲线,以及湍流粘度的分布。并与实验数据进行了比较,得出了比较满意的结果。为将此模型加入到封闭腔内打下了基础。(本文来源于《华中科技大学》期刊2004-04-01)

高瑞利数论文开题报告

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

自然对流传热现象广泛存在于自然界和实际工程中,其中多孔介质与流体区域组成的复合封闭腔体内自然对流传热应用到更多领域:在建筑环境和建筑节能领域,进行室内舒适度评估时,具有多孔性质的外围护结构的建筑室内的温度分布和气流形态是两个重要指标:另外,建筑墙体的厚度也会影响到室内热湿环境,选择最佳墙体厚度就是一种有效的节能措施:工业生产过程,涉及到工业烘干,催化生产,核工程和农业谷物存储等相关领域。鉴于多孔介质与流体区域组成的自然对流传热机理有如此广泛的实际应用价值,无论是从科学研究还是工程应用来看,对其的探究有重要的意义。实际工程应用中,涉及到的空间多数为大尺度区域,因此流体的自然对流流动形态为高瑞利数流动。本文把具有外围护结构的建筑室看成填充多孔介质封闭腔体,采用多孔介质和空气自由流动的双区域物理模型,基于纯流体和多孔介质流动传热理论,建立了考虑壁面热辐射的流体区域和多孔介质区域的非稳态动量、能量方程,并对所建立的模型进行验证。采用有限元的方法对部分填充多孔介质封闭腔体内具有壁面热辐射的高Rayleigh数自然对流传热过程进行数值模拟分析,研究了Ra(高Rayleigh数和低Rayleigh数)对自然对流和传热的影响,尤其是高瑞利数的影响。其次,分析了各种表面发射率εi条件下的腔体近壁面边界层和温度场、流场的分布,讨论了表面发射率对自然对流和传热的影响。对不同厚度的多孔介质条件下复合腔体内部的流动和传热规律进行了数值模拟,分析多孔介质厚度对腔体内的自然对流和传热的影响。然后,对绝热上壁面和非绝热上壁面对复合腔体内部自然对流传热进行了模拟研究,分析了两种途径下复合腔体内部的温度场和流场。最后,研究了当夏季、冬季室外环境相差较大时,复合腔体内部空气的流动规律和温度分布,讨论了冬季取暖、夏季制冷时计算负荷依据的差异。分析数值模拟结果发现,高瑞利数(Ra=108、109、1010)流体同低瑞利数(Ra=104、105、106)一样,随着Ra的增大,自然对流传热作用增强,将Ra=106与Ra=1010比较发现,温度场和流场的分布差距较大,高瑞利数的腔体内温度分布均匀,流线分布更有规则,对流和传热作用也较显着。边界层明显变薄,多孔介质区域和流体区域交界面处的平均对流努塞尔数很好的佐证了这一点。壁面热辐射的存在减弱了自然对流作用,使近壁面边界层变厚,即使发射率很小,但表面发射率仍可明显改变温度场的分布。多孔介质区域与流体区域交界面处的平均对流努塞尔数随发射率增大而降低,平均辐射努塞尔数和总努塞尔数则随着发射率的增加而变大,且增长速率大于减小的速率。当多孔介质墙体厚度d≤0.25m时,Nuc随着厚度d的增加而不断变大,之后平均自然对流努塞尔数将不再跟着厚度的增加而变化。这意味着当多孔介质厚度达到一定值后,继续增加其厚度,传热量将不再减小。当复合腔体上壁面为非绝热时,涡核心区在腔体下部,上部流线分布不均匀,近壁面边界层变薄,腔体温度升高,但趋于不均匀分布。冬季与夏季因室外环境温度差异大,造成建筑室内环境的明显改变。冬季与夏季两侧壁面的高低温温度分布正好相反,因此腔体内流场的分布水平对称。相比于夏季,冬季的涡核心区位于流体区域下部,热量传递能力高于夏季,但冬季各处温差较大。两季节的多孔介质区域和流体区域之间都同样存在较大温度差。在实际运用中,壁面的热辐射对封闭腔体内部的自然对流、热质交换过程的影响是客观存在的,而且对于像谷物储存、建筑环境等工程应用的复合腔体中热传递问题大多是高Rayleigh数自然对流、传热传质过程,而国内外学者对此问题研究的较少。因此,对具有表面辐射的部分填充多孔介质的复合腔体内高瑞利数自然对流传热问题的研究还需不断探究,以便为实际工程应用提供理论基础。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

高瑞利数论文参考文献

[1].张卢腾,马如冰,周瑜琨,张亚培,田文喜.高瑞利数下熔融池换热特性试验研究[J].原子能科学技术.2016

[2].杨君.具有表面辐射的部分填充多孔介质的复合腔体内高瑞利数自然对流传热研究[D].山东建筑大学.2016

[3].张卢腾,周瑜琨,张亚培,田文喜,秋穗正.基于熔盐工质的高瑞利数熔融池换热特性试验研究[C].“从设计上实际消除核电厂大量放射性物质释放”研讨会论文集.2015

[4].赵健,刘扬,董航,魏立新.高瑞利数条件下竖排管束对原油的换热特性研究[J].热能动力工程.2014

[5].阳祥,陶文铨.高瑞利数下封闭腔内自然对流的数值模拟[J].西安交通大学学报.2014

[6].孙亮,孙一峰,马东军,孙德军.高瑞利数下水平自然热对流的幂律关系[J].物理学报.2007

[7].李光正,马洪林.封闭腔内高瑞利数层流自然对流数值模拟[J].华中科技大学学报(城市科学版).2004

[8].马洪林.封闭腔内高瑞利数(Ra)层流与湍流自然对流数值模拟[D].华中科技大学.2004

论文知识图

Pr=8,Ra=1·28×109时的流场图(流函数...1.2圆筒内Ray丨eigh-B^ia...方腔内部在自然对流条件下的温度场和...1.3温度边界层与速度边界层示意图,a...3.10在^n=0.35时,叁支稳...交界面处局部努谢尔特数的变化情况图

标签:;  ;  ;  ;  ;  ;  ;  

高瑞利数论文_张卢腾,马如冰,周瑜琨,张亚培,田文喜
下载Doc文档

猜你喜欢