带Neumann边界条件的分数阶Laplacian算子的特征值问题及应用

带Neumann边界条件的分数阶Laplacian算子的特征值问题及应用

论文摘要

众所周知,线性微分算子的特征值和特征函数是算子理论的核心之一,也是研究相应非线性问题的基础之一.我们研究了在Neumann边界条件下带权的分数阶Laplacian算子的特征值问题(?)其中,s ∈(0,1),λ>0,m,c∈C0,1(Ω).首先在c(x)三0的情形下,上述问题存在正的主特征值的充要条件是权函数m(x)满足条件∫Ωm(x)dx<0 且存在x0∈ Ω,使得m(x0)>0,将Montefusco等人[Discrete Contin.Dynam.Syst.B,2013]的结果(s= 1/2 的情形)推广到一般的s ∈(0,1).同时证明了该特征值的爆破性质,即对于一列权函数(?)的充分条件和必要条件,这个结论将经典的Laplacian算子的情形[Umezu K.,et al.,Proc.R.Soc.Edinb.,2007]推广到了分数阶Laplacian算子.接着考虑了m(x ≡1的情形,证明了上述特征值问题主特征值λ1和其对应的主特征函数的存在性,并且λ1是单的.当λ>λ1,若上述问题解存在,则解是变号的.在此基础上,最后研究了如下logistic型方程(?)存在唯一正解的充要条件是λ>λ1,并讨论了该正解的正则性,把Dirichlet边界情形的结果[Alves M.O.,et al.,Proc.R.Soc.Edinb.,2017]推广到Neumann 边界情形。

论文目录

  • 中文摘要
  • Abstract
  • 第一章 引言
  •   1.1 研究背景
  •   1.2 研究现状与本文主要结果
  • 第二章 函数空间的构造及其基本性质
  •   2.1 函数空间的构造
  •   2.2 基本性质
  • 第三章 带Neumann边界条件的分数阶Laplacian算子的特征值问题
  •   3.1 c(x)≡0时的特征值问题
  •   3.2 m(x)≡1时的特征值问题
  • 第四章 Logistic型方程解的存在性
  • 研究展望
  • 参考文献
  • 致谢
  • 文章来源

    类型: 硕士论文

    作者: 弓昕

    导师: 孙红蕊

    关键词: 分数阶算子,特征值问题,边界条件,爆破性质,型方程

    来源: 兰州大学

    年度: 2019

    分类: 基础科学

    专业: 数学

    单位: 兰州大学

    分类号: O177

    总页数: 51

    文件大小: 1862K

    下载量: 36

    相关论文文献

    • [1].Gradient Estimates for p-Laplacian Lichnerowicz Equation on Noncompact Metric Measure Space[J]. Chinese Annals of Mathematics,Series B 2020(03)
    • [2].Equivalence Relation between Initial Values and Solutions for Evolution p-Laplacian Equation in Unbounded Space[J]. Communications in Mathematical Research 2020(01)
    • [3].Ordering Quasi-Tree Graphs by the Second Largest Signless Laplacian Eigenvalues[J]. Journal of Mathematical Research with Applications 2020(05)
    • [4].Existence of Solutions to Nonlinear Schr?dinger Equations Involving N-Laplacian and Potentials Vanishing at Infinity[J]. Acta Mathematica Sinica 2020(10)
    • [5].含偶圈图的Laplacian谱刻画[J]. 运筹学学报 2018(04)
    • [6].四阶p-Laplacian边值问题正解的存在性(英文)[J]. 数学季刊(英文版) 2018(04)
    • [7].The Existence of Semiclassical States for Some P-Laplacian Equation with Critical Exponent[J]. Acta Mathematicae Applicatae Sinica 2017(02)
    • [8].Soft Decision Based Gaussian-Laplacian Combination Model for Noisy Speech Enhancement[J]. Chinese Journal of Electronics 2018(04)
    • [9].具有奇性的Laplacian型方程周期正解的存在性[J]. 韩山师范学院学报 2016(06)
    • [10].Blow-up of p-Laplacian evolution equations with variable source power[J]. Science China(Mathematics) 2017(03)
    • [11].Solvability for a Coupled System of Fractional p-Laplacian Differential Equations at Resonance[J]. Communications in Mathematical Research 2017(01)
    • [12].The Existence of Nodal Solutions for the Half-Quasilinear p-Laplacian Problems[J]. Journal of Mathematical Research with Applications 2017(02)
    • [13].Coiflet solution of strongly nonlinear p-Laplacian equations[J]. Applied Mathematics and Mechanics(English Edition) 2017(07)
    • [14].Laplacian Energies of Regular Graph Transformations[J]. Journal of Donghua University(English Edition) 2017(03)
    • [15].Existence of Solutions to a p-Laplacian Equation with Integral Initial Condition[J]. Communications in Mathematical Research 2017(04)
    • [16].The Signless Laplacian Spectral Characterization of Strongly Connected Bicyclic Digraphs[J]. Journal of Mathematical Research with Applications 2016(01)
    • [17].Multiplicity for Nonlinear Elliptic Boundary Value Problems of p-Laplacian Type Without Ambrosetti-Rabinowitz Condition[J]. Acta Mathematicae Applicatae Sinica 2015(01)
    • [18].Existence of Solutions for a Four-point Boundary Value Problem with a p(t)-Laplacian[J]. Communications in Mathematical Research 2015(01)
    • [19].奇异Φ-Laplacian周期边值问题解的存在性[J]. 山东大学学报(理学版) 2015(08)
    • [20].单圈图的最小无号Laplacian谱展[J]. 华南师范大学学报(自然科学版) 2013(04)
    • [21].循环图的Laplacian谱展[J]. 数学杂志 2013(06)
    • [22].The Normalized Laplacian Spectrum of Pentagonal Graphs and Its Applications[J]. Journal of Mathematical Research with Applications 2019(04)
    • [23].Evolutionary p(x)-Laplacian Equation with a Convection Term[J]. Acta Mathematicae Applicatae Sinica 2019(03)
    • [24].Existence of Nonnegative Solutions for a Class of Systems Involving Fractional(p,q)-Laplacian Operators[J]. Chinese Annals of Mathematics,Series B 2018(02)
    • [25].一类p-Laplacian方程单侧全局区间分歧及应用[J]. 数学物理学报 2018(04)
    • [26].Energy and Laplacian of fractal interpolation functions[J]. Applied Mathematics:A Journal of Chinese Universities 2017(02)
    • [27].图的Normalized Laplacian多项式系数[J]. 集美大学学报(自然科学版) 2016(01)
    • [28].一类具有奇性p-Laplacian-Rayleigh方程的周期正解[J]. 韩山师范学院学报 2016(03)
    • [29].Homoclinic Solutions for a Prescribed Mean Curvature Lienard p-Laplacian Equation with a Deviating Argument[J]. Journal of Donghua University(English Edition) 2016(03)
    • [30].一类奇性的p-Laplacian-Rayleigh方程的周期正解的存在性[J]. 井冈山大学学报(自然科学版) 2016(04)

    标签:;  ;  ;  ;  ;  

    带Neumann边界条件的分数阶Laplacian算子的特征值问题及应用
    下载Doc文档

    猜你喜欢