圆极化波导阵列天线论文和设计-陶道申

全文摘要

本实用新型属于卫星通信技术领域,公开了圆极化波导阵列天线,包括多模腔体、开口波导和馈电波导,所述多模腔体和馈电波导之间设有耦合缝隙,多模腔体远离馈电波导的一侧设有多个辐射波孔,多个所述辐射波孔为2×2阵列形式排布,辐射波孔的中心连线为矩形,开口波导设有多个,多个开口波导与辐射波孔一一对应设置。本实用新型通过设置2×2阵列形式的辐射波孔,实现了一馈四的波传播。

主设计要求

1.圆极化波导阵列天线,其特征在于:包括多模腔体(2)、开口波导(1)和馈电波导(6),所述多模腔体(2)和馈电波导(6)之间设有耦合缝隙(21);所述多模腔体(2)远离馈电波导(6)的一侧设有多个辐射波孔(4),多个所述辐射波孔(4)为2×2阵列形式排布,辐射波孔(4)的中心连线为矩形;所述开口波导(1)设有多个,多个开口波导(1)与辐射波孔(4)一一对应设置。

设计方案

1.圆极化波导阵列天线,其特征在于:包括多模腔体(2)、开口波导(1)和馈电波导(6),所述多模腔体(2)和馈电波导(6)之间设有耦合缝隙(21);

所述多模腔体(2)远离馈电波导(6)的一侧设有多个辐射波孔(4),多个所述辐射波孔(4)为2×2阵列形式排布,辐射波孔(4)的中心连线为矩形;

所述开口波导(1)设有多个,多个开口波导(1)与辐射波孔(4)一一对应设置。

2.根据权利要求1所述的圆极化波导阵列天线,其特征在于:所述辐射波孔(4)为椭圆形。

3.根据权利要求2所述的圆极化波导阵列天线,其特征在于:所述耦合缝隙(21)的中心线平行与辐射波孔(4)的长轴平行。

4.根据权利要求2所述的圆极化波导阵列天线,其特征在于:所述多模腔体(2)远离馈电波导(6)的一侧连接有隔板(3),多个所述辐射波孔(4)均设于隔板(3)。

5.根据权利要求4所述的圆极化波导阵列天线,其特征在于:所述隔板(3)远离多模腔体(2)的一侧连接有多个金属移相装置(5),多个所述金属移相装置(5)与辐射波孔(4)一一对应设置。

6.根据权利要求5所述的圆极化波导阵列天线,其特征在于:所述金属移相装置(5)包括相互配合的第一金属移相块(51)和第二金属移相块(52),所述第一金属移相块(51)和第二金属移相块(52)沿着辐射波孔(4)的边缘设置,第一金属移相块(51)和第二金属移相块(52)之间设有移相槽(53),所述移相槽(53)轴线的投影与辐射波孔(4)轴线投影的夹角为45°。

7.根据权利要求6所述的圆极化波导阵列天线,其特征在于:多个所述移相槽(53)的轴线相互平行设置。

8.根据权利要求7所述的圆极化波导阵列天线,其特征在于:所述第二金属移相块(52)的两端分别对应设有一个第一金属移相块(51),所述第一金属移相块(51)和第二金属移相块(52)分别设于辐射波孔(4)较长的两端。

9.根据权利要求1所述的圆极化波导阵列天线,其特征在于:所述多模腔体(2)为矩形腔体。

10.根据权利要求4所述的圆极化波导阵列天线,其特征在于:所述隔板(3)靠近多模腔体(2)的一侧连接有多个辐射筒(7),多个所述辐射筒(7)与辐射波孔(4)一一对应。

设计说明书

技术领域

本实用新型属于卫星通信技术领域,具体涉及圆极化波导阵列天线。

背景技术

目前在通信频段越来越向高频段发展,尤其在Ku、Ka波段,其频率决定带宽比工作在L、S波段的天线,工作在此频段的要求天线具有尺寸小、增益高、点波束的特性,实现上述性能的天线主要有以下几种天线形式,但各有优缺点:

1、波导缝隙天线:该形式天线是在波导宽边或窄边进行开缝,通常有行波、驻波两种阵列形式,但辐射单元缝隙的增益相对较低,通常只有7dB左右,由于为串馈形式,带宽内出现频扫现象,随着工作频率的增高,要求加工精度也越高,需借助较高的焊接工艺加工制造,成品率较低,导致成本较高。

2、微带贴片天线,该天线形式具有轮廓低、可集成有源器件、可实现辐射单元与网络一体化设计的,但天线的介质损耗较大,且存在漏波效应,天线单元增益低、馈电网络损耗大,不利用实现高增益天线设计。

3、反射面天线,该形式天线在Ka频段具有很好的射频性能,差损低、辐射效率高、实现圆极化辐射相对技术较为简单,但该形式天线物理尺寸较大,不适用在一些安装空间狭小的场合。

4.透镜天线,该天线形式与反射面天线类似,通常采用馈源照射介质球、介质饼等,使波束聚焦,实现高增益照射的目的,但与反射面天线同样具有天线体积尺寸过大,与平面阵列天线比较无法共形安装。

圆极化天线是由线极化天线发展而来的,它们都是椭圆极化天线的一种特例,一般将椭圆度不大的椭圆极化天线统称为圆极化天线,圆极化又可分为左旋和右旋两种。圆极化天线广泛应用在雷达、电子对抗、侦察和干扰、通信、遥感遥测等各个方面。在雷达中使用圆极化天线可以抗云、雨的干扰;在电子对抗中,使用圆极化天线可以干扰和侦察敌方的各种线极化和椭圆极化方式的电波;在航空、航天通信及遥测设备中采用圆极化天线,能消除由电离层法拉第旋转效应引起的极化畸变影响。

目前,现有的天线主要存在以下问题:

1、现有的天线多为线极化,由于极化方式导致信号不稳定。

2、现有的天线无法进行移相调节。

实用新型内容

本实用新型目的在于提供圆极化波导阵列天线,通过改变天线的结构,改变天线的极化方式,其次,通过设置四个辐射波孔,实现了一馈四波导缝隙阵列的宽带圆极化辐射。

为了解决现有技术存在的上述问题,本实用新型所采用的技术方案为:

圆极化波导阵列天线,包括多模腔体、开口波导和馈电波导,所述多模腔体和馈电波导之间设有耦合缝隙。

所述多模腔体远离馈电波导的一侧设有多个辐射波孔,多个所述辐射波孔为2×2阵列形式排布,辐射波孔的中心连线为矩形。

所述开口波导设有多个,多个开口波导与辐射波孔一一对应设置。

进一步的,通过设置2×2阵列形式的辐射波孔,实现了一馈四的波传播。

进一步的,所述辐射波孔为椭圆形。

进一步的,所述耦合缝隙的中心线平行与辐射波孔的长轴平行。

进一步的,所述多模腔体远离馈电波导的一侧连接有隔板,多个所述辐射波孔均设于隔板。

进一步的,所述隔板远离多模腔体的一侧连接有多个金属移相装置,多个所述金属移相装置与辐射波孔一一对应设置。

进一步的,通过巧妙的在四个开口波导馈电缝隙上设置金属移相装置,实现了一馈四波导缝隙阵列的宽带圆极化辐射。

进一步的,所述金属移相装置包括相互配合的第一金属移相块和第二金属移相块,所述第一金属移相块和第二金属移相块沿着辐射波孔的边缘设置,第一金属移相块和第二金属移相块之间设有移相槽,所述移相槽轴线的投影与辐射波孔轴线投影的夹角为40-45°。

进一步的,所述移相槽轴线的投影与辐射波孔轴线投影的夹角为45°。

进一步的,由于对波导缝隙加入金属移相块,并且两个金属移相块之间有40-45°的缝隙,从而使激励起的垂直于辐射缝隙的电场分解为两个正交极化的电场,并且相位差90°,因而产生某一旋向的圆极化电磁场,并辐射到自由空间。

进一步的,多个所述移相槽的轴线相互平行设置。

进一步的,使得波在传播的时候损耗最小。

进一步的,所述第二金属移相块的两端分别对应设有一个第一金属移相块,所述第一金属移相块和第二金属移相块分别设于辐射波孔较长的两端。

进一步的,通过设置金属移相装置,实现了波导缝隙阵列的宽带圆极化辐射。

进一步的,所述第二金属移相块的两端分别对应设有一个第一金属移相块,所述第一金属移相块和第二金属移相块分别设于辐射波孔长轴的两端。

进一步的,所述多模腔体为矩形腔体。

进一步的,所述隔板靠近多模腔体的一侧连接有多个辐射筒,多个所述辐射筒与辐射波孔一一对应。

进一步的,所述辐射筒为椭圆形,所述辐射筒的截面与辐射波孔的形状相同、大小相等,辐射筒沿着辐射波孔的边缘设置。

进一步的,所述耦合缝隙位于多模腔体的下层,耦合缝隙在多模腔体上激励起线极化电流,并耦合到辐射波孔中,并在其中激励起旋转的电场,辐射到自由空间,实现圆极化辐射。

进一步的,所述耦合缝隙的长度为0.47λ0<\/sub>,宽度为0.05λ0<\/sub>,其中λ0<\/sub>为中心频率对应波长。

进一步的,所述多模腔体为矩形腔体。

进一步的,所述多模腔体的长度1.1λ0<\/sub>,宽度为0.9λ0<\/sub>。

进一步的,所述矩形的多模腔体在反射波的时候,能够保证波的损耗最小。

进一步的,所述开口波导为端面呈矩形的壳体。

本实用新型的有益效果为:

(1)本实用新型通过设置2×2阵列形式的辐射波孔,实现了一馈四的波传播。

(2)本实用新型通过巧妙的在四个开口波导馈电缝隙上设置金属移相装置,实现了一馈四波导缝隙阵列的宽带圆极化辐射。

(3)本实用新型通过限定矩形腔体的尺寸,确定了天线的工作频段和工作带宽。

(4)本实用新型通过将开口波导制成矩形壳体,使得矩形的开口波导在反射波的时候,能够保证波的损耗最小。

(5)本实用新型将多模腔体制成矩形腔体,使得矩形的多模腔体在反射波的时候,能够保证波的损耗最小。

(6)本实用新型通过限定耦合缝隙的长度,使得该天线在波通过时能够最大限度保留波的能量。

(7)本实用新型通过设置辐射筒,使得波的传播更加稳定,信号聚集度高。

附图说明

图1为本实用新型的结构示意图;

图2为图1的主视图;

图3为本实用新型中金属移相装置的连接示意图;

图4为本实用新型中隔板的结构示意图。

图中:1-开口波导;2-多模腔体;21-耦合缝隙;3-隔板;4-辐射波孔;5-金属移相装置;51-第一金属移相块;52-第二金属移相块;53-移相槽;6-馈电波导;7-辐射筒。

具体实施方式

下面结合附图及具体实施例对本实用新型作进一步阐述。

在本实用新型的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本实用新型和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本实用新型的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。

以下结合附图对本实用新型的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本实用新型,并不用于限制本实用新型。

实施例1:

如图1所示,圆极化波导阵列天线,包括多模腔体2、开口波导1和馈电波导6,所述多模腔体2和馈电波导6之间设有耦合缝隙21。

所述多模腔体2远离馈电波导6的一侧设有多个辐射波孔4,多个所述辐射波孔4为2×2阵列形式排布,辐射波孔4的中心连线为矩形。

所述开口波导1设有多个,多个开口波导1与辐射波孔4一一对应设置。

通过设置2×2阵列形式的辐射波孔4,实现了一馈四的波传播。

实施例2:

如图1-4所示,圆极化波导阵列天线,包括多模腔体2、开口波导1和馈电波导6,所述多模腔体2和馈电波导6之间设有耦合缝隙21。

所述多模腔体2远离馈电波导6的一侧设有多个辐射波孔4,多个所述辐射波孔4为2×2阵列形式排布,辐射波孔4的中心连线为矩形。

所述开口波导1设有多个,多个开口波导1与辐射波孔4一一对应设置。

通过设置2×2阵列形式的辐射波孔4,实现了一馈四的波传播。

所述辐射波孔4为椭圆形。

所述耦合缝隙21的中心线平行与辐射波孔4的长轴平行。

所述多模腔体2远离馈电波导6的一侧连接有隔板3,多个所述辐射波孔4均设于隔板3。

所述隔板3远离多模腔体2的一侧连接有多个金属移相装置5,多个所述金属移相装置5与辐射波孔4一一对应设置。

所述金属移相装置5包括相互配合的第一金属移相块51和第二金属移相块52,所述第一金属移相块51和第二金属移相块52沿着辐射波孔4的边缘设置,第一金属移相块51和第二金属移相块52之间设有移相槽53,所述移相槽53轴线的投影与辐射波孔4轴线投影的夹角为40-48°。

所述移相槽53轴线的投影与辐射波孔4轴线投影的夹角为43°。

由于对波导缝隙加入金属移相块,并且两个金属移相块之间有43°的缝隙,从而使激励起的垂直于辐射缝隙的电场分解为两个正交极化的电场,并且相位差90°,因而产生某一旋向的圆极化电磁场,并辐射到自由空间。

所述第二金属移相块52的两端分别对应设有一个第一金属移相块51,所述第一金属移相块51和第二金属移相块52分别设于辐射波孔4较长的两端。

所述第二金属移相块52的两端分别对应设有一个第一金属移相块51,所述第一金属移相块51和第二金属移相块52分别设于辐射波孔4长轴的两端。

通过设置金属移相装置5,实现了波导缝隙阵列的宽带圆极化辐射。

所述多模腔体2为矩形腔体。

所述隔板3靠近多模腔体2的一侧连接有多个辐射筒7,多个所述辐射筒7与辐射波孔4一一对应。

所述辐射筒7为椭圆形,所述辐射筒7的截面与辐射波孔4的形状相同、大小相等,辐射筒7沿着辐射波孔4的边缘设置。

所述耦合缝隙21位于多模腔体2的下层,耦合缝隙4在多模腔体2上激励起线极化电流,并耦合到辐射波孔4中,并在其中激励起旋转的电场,辐射到自由空间,实现圆极化辐射。

实施例3:

如图1-4所示,圆极化波导阵列天线,包括多模腔体2、开口波导1和馈电波导6,所述多模腔体2和馈电波导6之间设有耦合缝隙21。

所述多模腔体2远离馈电波导6的一侧设有多个辐射波孔4,多个所述辐射波孔4为2×2阵列形式排布,辐射波孔4的中心连线为矩形。

所述开口波导1设有多个,多个开口波导1与辐射波孔4一一对应设置,通过设置2×2阵列形式的辐射波孔4,实现了一馈四的波传播。

所述金属移相装置5包括相互配合的第一金属移相块51和第二金属移相块52,所述第一金属移相块51和第二金属移相块52沿着辐射波孔4的边缘设置,第一金属移相块51和第二金属移相块52之间设有移相槽53,所述移相槽53轴线的投影与辐射波孔4轴线投影的夹角为45°。

所述第二金属移相块52的两端分别对应设有一个第一金属移相块51,所述第一金属移相块51和第二金属移相块52分别设于辐射波孔4较长的两端,通过设置金属移相装置5,实现了波导缝隙阵列的宽带圆极化辐射,第二金属移相块52的两端分别对应设有一个第一金属移相块51,所述第一金属移相块51和第二金属移相块52分别设于辐射波孔4长轴的两端。

多个所述移相槽53的轴线相互平行设置,使得波在传播的时候损耗最小。

由于对波导缝隙加入金属移相块,并且两个金属移相块之间有45°的缝隙,从而使激励起的垂直于辐射缝隙的电场分解为两个正交极化的电场,并且相位差90°,因而产生某一旋向的圆极化电磁场,并辐射到自由空间。

所述多模腔体2为矩形腔体,隔板3靠近多模腔体2的一侧连接有多个辐射筒7,多个所述辐射筒7与辐射波孔4一一对应,辐射筒7为椭圆形,所述辐射筒7的截面与辐射波孔4的形状相同、大小相等,辐射筒7沿着辐射波孔4的边缘设置。

所述辐射波孔4为椭圆形,耦合缝隙21的中心线平行与辐射波孔4的长轴平行,多模腔体2远离馈电波导6的一侧连接有隔板3,多个所述辐射波孔4均设于隔板3隔板3远离多模腔体2的一侧连接有多个金属移相装置5,多个所述金属移相装置5与辐射波孔4一一对应设置,通过巧妙的在四个开口波导1馈电缝隙上设置金属移相装置5,实现了一馈四波导缝隙阵列的宽带圆极化辐射。

所述耦合缝隙21位于多模腔体2的下层,耦合缝隙4在多模腔体2上激励起线极化电流,并耦合到辐射波孔4中,并在其中激励起旋转的电场,辐射到自由空间,实现圆极化辐射,耦合缝隙21的长度为0.47λ0<\/sub>,宽度为0.05λ0<\/sub>,其中λ0<\/sub>为中心频率对应波长,多模腔体2的长度1.1λ0<\/sub>,宽度为0.9λ0<\/sub>。

所述多模腔体2为矩形腔体,矩形的多模腔体2在反射波的时候,能够保证波的损耗最小,开口波导1为端面呈矩形的壳体。

实施例4:

如图1-4所示,圆极化波导阵列天线,包括多模腔体2、开口波导1和馈电波导6,所述多模腔体2和馈电波导6之间设有耦合缝隙21。

所述多模腔体2远离馈电波导6的一侧设有多个辐射波孔4,多个所述辐射波孔4为2×2阵列形式排布,辐射波孔4的中心连线为矩形。

所述开口波导1设有多个,多个开口波导1与辐射波孔4一一对应设置。

通过设置2×2阵列形式的辐射波孔4,实现了一馈四的波传播。

所述辐射波孔4为椭圆形。

所述耦合缝隙21的中心线平行与辐射波孔4的长轴平行。

所述多模腔体2远离馈电波导6的一侧连接有隔板3,多个所述辐射波孔4均设于隔板3。

所述隔板3远离多模腔体2的一侧连接有多个金属移相装置5,多个所述金属移相装置5与辐射波孔4一一对应设置。

通过巧妙的在四个开口波导1馈电缝隙上设置金属移相装置5,实现了一馈四波导缝隙阵列的宽带圆极化辐射。

所述金属移相装置5包括相互配合的第一金属移相块51和第二金属移相块52,所述第一金属移相块51和第二金属移相块52沿着辐射波孔4的边缘设置,第一金属移相块51和第二金属移相块52之间设有移相槽53,所述移相槽53轴线的投影与辐射波孔4轴线投影的夹角为40-48°。

所述移相槽53轴线的投影与辐射波孔4轴线投影的夹角为45°。

由于对波导缝隙加入金属移相块,并且两个金属移相块之间有40-45°的缝隙,从而使激励起的垂直于辐射缝隙的电场分解为两个正交极化的电场,并且相位差90°,因而产生某一旋向的圆极化电磁场,并辐射到自由空间。

多个所述移相槽53的轴线相互平行设置。

使得波在传播的时候损耗最小。

所述第二金属移相块52的两端分别对应设有一个第一金属移相块51,所述第一金属移相块51和第二金属移相块52分别设于辐射波孔4较长的两端。

通过设置金属移相装置5,实现了波导缝隙阵列的宽带圆极化辐射。

所述第二金属移相块52的两端分别对应设有一个第一金属移相块51,所述第一金属移相块51和第二金属移相块52分别设于辐射波孔4长轴的两端。

所述多模腔体2为矩形腔体。

所述隔板3靠近多模腔体2的一侧连接有多个辐射筒7,多个所述辐射筒7与辐射波孔4一一对应。

所述辐射筒7为椭圆形,所述辐射筒7的截面与辐射波孔4的形状相同、大小相等,辐射筒7沿着辐射波孔4的边缘设置。

所述耦合缝隙21位于多模腔体2的下层,耦合缝隙4在多模腔体2上激励起线极化电流,并耦合到辐射波孔4中,并在其中激励起旋转的电场,辐射到自由空间,实现圆极化辐射。

耦合缝隙21的长度为0.47λ0<\/sub>,宽度为0.05λ0<\/sub>,其中λ0<\/sub>为中心频率对应波长。

所述多模腔体2为矩形腔体。

所述多模腔体2的长度1.1λ0<\/sub>,宽度为0.9λ0<\/sub>。

所述矩形的多模腔体2在反射波的时候,能够保证波的损耗最小。

所述开口波导1为端面呈矩形的壳体。

研究发现:按着上述天线结构尺寸配置,天线的辐射效率大于80%。此天线结构的特点是,实现了高效率圆极化天线,较适合应用于小口径卫星天线系统中。

本实用新型工作原理如下:当发射信号时,发射机将电磁信号通过馈电波导6馈入到多模腔体2中,在多模腔体2中聚集能量,并由耦合缝隙21扰动上表面内臂电流,产生谐振电流,此振荡电流在辐射波孔4中,由于对波导缝隙加入金属移相块,并且两个金属移相块之间有40-45°的缝隙,从而使激励起的垂直于辐射缝隙的电场分解为两个正交极化的电场,并且相位差90°,因而产生某一旋向的圆极化电磁场,并辐射到自由空间。天线的发射与接收为互易过程。

本实用新型不局限于上述可选实施方式,任何人在本实用新型的启示下都可得出其他各种形式的产品,但不论在其形状或结构上作任何变化,凡是落入本实用新型权利要求界定范围内的技术方案,均落在本实用新型的保护范围之内。

设计图

圆极化波导阵列天线论文和设计

相关信息详情

申请码:申请号:CN201822273878.9

申请日:2018-12-29

公开号:公开日:国家:CN

国家/省市:90(成都)

授权编号:CN209056613U

授权时间:20190702

主分类号:H01Q 21/00

专利分类号:H01Q21/00;H01Q21/24;H01Q19/10;H01Q1/50;H01Q1/36;H01Q3/30

范畴分类:38G;

申请人:四川睿迪澳科技有限公司

第一申请人:四川睿迪澳科技有限公司

申请人地址:610000 四川省成都市高新区航天城上城13栋1811

发明人:陶道申;李一凡

第一发明人:陶道申

当前权利人:四川睿迪澳科技有限公司

代理人:王霞

代理机构:51224

代理机构编号:成都顶峰专利事务所(普通合伙)

优先权:关键词:当前状态:审核中

类型名称:外观设计

标签:;  ;  ;  ;  

圆极化波导阵列天线论文和设计-陶道申
下载Doc文档

猜你喜欢