导读:本文包含了局部幂零群论文开题报告文献综述、选题提纲参考文献及外文文献翻译,主要关键词:子群,局部,论文,超可解群,可解群,幂零群,素谱。
局部幂零群论文文献综述
张驰[1](2019)在《子群与有限群的结构,σ-超可解群与半σ-幂零群,子群格和σ-局部群系》一文中研究指出本论文主要研究子群性质与有限群结构及子群格,建立σ-超可解群和半σ-幂零群的理论以及σ-局部群系与n-重σ-局部群系的理论.全文共分为六章.第一章介绍本博士论文的研究背景和所取得的成果.第二章给出该论文中常用的数学符号、概念和一些已知的有用结果.第叁章我们研究子群性质与有限群结构.第一节研究有限群极大子群的素谱,应用数论知识,我们解决了由Monakhov和A.N.Skiba提出的关于极大子群的素谱的一个公开问题.第二节研究弱σ-置换子群对有限群结构的影响.我们结合A.N.Skiba提出的σ-置换和弱s-置换的两个概念,提出了一个新的“弱σ-置换子群”概念,并通过Hall-子群的极大子群的弱σ-置换性,得到了群G是超可解群和G的正规子群超循环嵌入的新的判定定理,从而推广了许多前人的结果.第叁节我们研究了π-拟F-群的性质,给出了判定一个群G是π-拟F-群的充分必要条件.从而解决了一个关于7T-拟F-群的公开问题.第四章我们建立了两种新的群类.第一节我们主要利用A.N.Skiba和郭文彬教授提出的σ-群的性质,建立了σ-超可解的理论,并且给出了这类群的结构的详细刻画.第二节建立了半σ-幂零的理论,给出了这类群的一些结构刻画.第五章我们研究有限群的两个群格:分别记为LcF(G和LF(G),给出了这两个子格相等的条件,并由此得到“一个有限可解群是PST-群的充分必要条件是Lch(G)=Lh(G)”.第六章我们建立σ-局部群系与n重σ-局部群系的理论.第一节建立σ-局部群系的理论,由此推广了Kramer的理论.第二节我们进一步推广σ-局部群系,建立了n重σ-局部群系的理论,并且给出了相关性质及其格结构.(本文来源于《中国科学技术大学》期刊2019-04-01)
局部幂零群论文开题报告
局部幂零群论文参考文献
[1].张驰.子群与有限群的结构,σ-超可解群与半σ-幂零群,子群格和σ-局部群系[D].中国科学技术大学.2019