导读:本文包含了进水基质论文开题报告文献综述、选题提纲参考文献及外文文献翻译,主要关键词:基质,污泥,反应器,浓度,溴酸盐,颗粒,氯酸盐。
进水基质论文文献综述
林华,孙戬,张学洪,李海翔[1](2019)在《氢气压力和进水流速对氢基质生物膜反应器同步去除溴酸盐和高氯酸盐的影响》一文中研究指出为了考察氢基质生物膜反应器(MBfR)中氢气压力和进水流速对溴酸盐(BrO_3~-)和高氯酸盐(ClO_4~-)同步去除的影响,基于短期系列实验,研究了不同氢气压力和进水流速下BrO_3~-和ClO_4~-的去除效率、去除通量、当量电子转移通量及还原反应动力学。结果表明:氢气压力从0.02 MPa提高至0.08 MPa时,BrO_3~-和ClO_4~-的去除率分别升高了12.5%和17.2%,去除通量分别升高了0.001 2 g·(m~2·d)~(-1)和0.002 g·(m~2·d)~(-1),但BrO_3~-和ClO_4~-去除率并未随氢气压力持续升高而呈线性升高趋势;当进水流速从1.0 mL·min~(-1)提高至4.0 mL·min~(-1)时,BrO_3~-和ClO_4~-的去除通量由0.005 g·(m~2·d)~(-1)和0.006 g·(m~2·d)~(-1)分别升高至0.014 g·(m~2·d)~(-1)和0.017 g·(m~2·d)~(-1),但BrO_3~-和ClO_4~-的去除率BrO_3~-和ClO_4~-的去除率明显降低;结合还原反应动力学研究,MBfR运行效能最佳的氢气压力和进水流速分别为0.04~0.06 MPa和2.0 mL·min~(-1)。生物膜当量电子转移通量分析表明,反硝化对电子供体(氢气)的竞争性抢夺比BrO_3~-和ClO_4~-还原更加激烈;还原反应动力学级数揭示了BrO_3~-和ClO_4~-还原对进水流速加快的敏感性比氢气压力变化更加强烈。为了获得更高的污染物去除效能,可以适当控制进水流速和水中共存NO_3~--N的竞争性抑制。(本文来源于《环境工程学报》期刊2019年10期)
张琳洁,张玉蓉,沈忱,李艾莉,张哲文[2](2016)在《进水基质对好氧颗粒污泥形成的影响及稳定性研究》一文中研究指出以网板式SBR反应器处理校园实际生活污水,考察了进水基质对好氧颗粒污泥培养过程的影响。通过试验对比实际生活污水与试验室人工合成生活污水对好氧颗粒污泥快速颗粒化的影响。结果表明:人工合成废水培养出的颗粒污泥处理效果与实际生活污水处理效果相当,进水基质不同并不会明显影响好氧颗粒污泥的形成及其稳定性,但是由于校园生活污水中有机物种类丰富,有机负荷较大,取用方便。从实际可行的角度出发,人工模拟合成废水成本较高,因此以校园生活污水为培养基培养好氧颗粒污泥并运行研究比人工模拟合成废水进行培养研究更有说服力和实际意义且可操作性更高。(本文来源于《甘肃科学学报》期刊2016年02期)
张健,陈益明,邱凌峰[3](2016)在《HRT与进水基质浓度对Anammox反应器效能影响研究》一文中研究指出以产甲烷颗粒污泥与硝化污泥混合物作为接种污泥,在Anammox-UASB反应器中实现反应器的启动与稳定运行。考察了缩短HRT及进水基质浓度变化对系统的影响。结果显示:缩短HRT能有效提高系统处理能力,但HRT过低会导致处理效果降低,本研究得到的最佳HRT为6 h,此时TN去除率76%,TN容积去除负荷最高,为1.82 kg/(m~3·d)。进水基质比例与浓度对Anammox反应器的稳定运行具有重要影响,当进水中NH_4~+-N与NO_2~--N两者比例约为1且浓度均为500 mg/L时,系统处理能力最佳,TN容积去除负荷为1.55 kg/(m~3·d),且去除率为77%。(本文来源于《环境工程》期刊2016年02期)
昌盛,刘枫[4](2015)在《对比分析进水基质浓度对乙醇型和丁酸型发酵制氢系统的影响》一文中研究指出以糖蜜废水为基质,将两套厌氧接触式发酵制氢反应器(ACR)出水pH分别控制在4.5~5.0、5.5~6.0的水平,通过逐级提升进水COD浓度方式,系统对比分析基质浓度对乙醇型和丁酸型发酵制氢系统的影响。结果显示,对于乙醇型发酵制氢系统而言,当HRT=6 h,进水COD从5000逐步提升至12000 mg·L-1时,反应器的产氢效能逐步得到增强,但当COD进一步提升至15000 mg·L-1时,底物反馈抑制作用开始显现,因而在进水COD为12000 mg·L-1时,ACR产氢性能最佳,系统的产氢速率、污泥比产氢速率和单位基质氢气转化率分别为68.8 L·d-1、744.5 ml H2·(g VSS·d)-1、2.3 mol H2·(mol葡萄糖)-1。对于丁酸型发酵制氢系统而言,当HRT=8h,在进水COD从5000提升至20000 mg·L-1过程中,ACR产氢效能总体呈下降趋势,在进水COD为5000mg·L-1时,系统的污泥比产氢速率和单位基质氢气转化率最大,分别为159.6 ml H2·(g VSS·d)-1、1.0 mol H2·(mol葡萄糖)-1。研究结果表明,在进水COD为500~20000 mg·L-1的运行中,ACR乙醇型发酵系统的产氢效能优于丁酸型发酵制氢系统。(本文来源于《化工学报》期刊2015年12期)
曹天昊,王淑莹,苗蕾,李忠明,彭永臻[5](2015)在《不同基质浓度下SBR进水方式对厌氧氨氧化的影响》一文中研究指出采用厌氧SBR反应器,分别以配水培养和以实际晚期垃圾渗滤液培养的厌氧氨氧化菌为研究对象,考察了不同基质浓度下,SBR改进式连续进水方式与一次性进水方式对厌氧氨氧化工艺运行性能的影响.结果表明,当处理人工配水时,在中低进水浓度下(NO2--N≤400mg/L),与改进式连续进水方式相比,宜采用一次性进水方式运行;在高进水浓度下(NO2--N≥400mg/L)改进式连续进水方式比一次性进水方式优势明显,特别是在5h改进式连续进水方式下,平均比污泥脱氮速率增加至39.11mg N/(g VSS·h),相比一次进水方式效率提高40%.当处理进水NO2--N浓度为(300±20)mg/L的实际晚期垃圾渗滤液时,5h改进式连续进水的SBR比污泥脱氮速率最高.由于晚期渗滤液较配水成分复杂,使得厌氧氨氧化菌面临有机物和有害物质的影响,其厌氧氨氧化的反应速率低于同等基质浓度配水条件下的厌氧氨氧化反应速率.(本文来源于《中国环境科学》期刊2015年08期)
刘倩,郭文龙,康银花,谭洪新[6](2012)在《进水基质对厌氧氨氧化反应器稳定性能的影响》一文中研究指出利用ASBR试验装置接种城市污泥成功启动反应器后,研究其厌氧氨氧化工艺对进水基质抗冲击能力的影响。结果表明:进水NO2--N的降低对反应器去除NH4+-N和NO2--N影响不大,对TN影响较大。当进水NO2--N与NH4+-N质量比为0.3时,TN去除率低于50%。当保持进水基质比值不变,考察高负荷稳定运行时降低NH4+-N负荷对反应器性能的冲击,在进水NH4+-N浓度由高逐渐降低过程中,NH4+-N、NO2--N去除率高达100%,而NO3--N生成量逐渐增加。当进水NH4+-N在10 mg/L时,TN去除率降至6.5%。向低氨(NH4+-N浓度<10 mg/L)废水中加入葡萄糖后,TN去除率立即上升,当进水溶解性有机碳(DOC)为90 mg/L时,TN去除率达到90%,说明反应器可以良好的处理模拟养殖废水。(本文来源于《广东农业科学》期刊2012年23期)
陈新明,申毅蓉[7](2008)在《不同进水基质好氧颗粒污泥性状研究》一文中研究指出为研究好氧颗粒污泥形成过程及污泥特性,采用特殊运行方式的厌氧-好氧SBR反应器,并分别以葡萄糖、乙酸钠、葡萄糖-乙酸钠为进水基质考察污泥颗粒化过程和污泥特性。(本文来源于《天津建设科技》期刊2008年01期)
进水基质论文开题报告
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
以网板式SBR反应器处理校园实际生活污水,考察了进水基质对好氧颗粒污泥培养过程的影响。通过试验对比实际生活污水与试验室人工合成生活污水对好氧颗粒污泥快速颗粒化的影响。结果表明:人工合成废水培养出的颗粒污泥处理效果与实际生活污水处理效果相当,进水基质不同并不会明显影响好氧颗粒污泥的形成及其稳定性,但是由于校园生活污水中有机物种类丰富,有机负荷较大,取用方便。从实际可行的角度出发,人工模拟合成废水成本较高,因此以校园生活污水为培养基培养好氧颗粒污泥并运行研究比人工模拟合成废水进行培养研究更有说服力和实际意义且可操作性更高。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
进水基质论文参考文献
[1].林华,孙戬,张学洪,李海翔.氢气压力和进水流速对氢基质生物膜反应器同步去除溴酸盐和高氯酸盐的影响[J].环境工程学报.2019
[2].张琳洁,张玉蓉,沈忱,李艾莉,张哲文.进水基质对好氧颗粒污泥形成的影响及稳定性研究[J].甘肃科学学报.2016
[3].张健,陈益明,邱凌峰.HRT与进水基质浓度对Anammox反应器效能影响研究[J].环境工程.2016
[4].昌盛,刘枫.对比分析进水基质浓度对乙醇型和丁酸型发酵制氢系统的影响[J].化工学报.2015
[5].曹天昊,王淑莹,苗蕾,李忠明,彭永臻.不同基质浓度下SBR进水方式对厌氧氨氧化的影响[J].中国环境科学.2015
[6].刘倩,郭文龙,康银花,谭洪新.进水基质对厌氧氨氧化反应器稳定性能的影响[J].广东农业科学.2012
[7].陈新明,申毅蓉.不同进水基质好氧颗粒污泥性状研究[J].天津建设科技.2008